K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

 Câu trả lời hay nhất:  áp dụng BĐT bunhiacopxki 
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1 
=> a² + b² + c² ≥ 1/3 

dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3

tk mk nha $_$

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Áp dụng BĐT Cô-si: 

$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:

$a^3+a\geq 2a^2$

$b^3+b\geq 2b^2$

$c^3+c\geq 2c^2$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$

Lại có:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$

$\geq a+b+c+3-3=a+b+c(2)$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$

Từ $(1); (2); (3)$ ta có đpcm.

 

18 tháng 6 2023

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

18 tháng 6 2023

Cảm ơn bạn nhé!

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

Muốn chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\) ta chỉ cần chỉ ra \(ab+bc+ac=1\)

Thật vậy:

\((a+b+c)^2-(a^2+b^2+c^2)=2^2-2\)

\(\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)-(a^2+b^2+c^2)=2\)

\(\Leftrightarrow 2(ab+bc+ac)=2\Rightarrow ab+bc+ac=1\)

Do đó ta có đpcm.

12 tháng 7 2018

Ta có :

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\) ( Luôn đúng vì \(a+b+c=0\) )

Wish you study well !!

7 tháng 5 2015

bạn chép lại đề nha

=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a

=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a

=     -a^2b-abc-b^2a

=     -ab(a+b+c)=-ab 0 =0

vậy đa thức này bằng 0

7 tháng 5 2015

=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a

=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a

=     -a^2b-abc-b^2a

=     -ab(a+b+c)=-ab 0 =0

vậy đa thức này bằng 0