2 Tìm các số nguyên x để B = /x-1/ + /x-2/ đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Ta có: \(B=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(B\ge\left|x-1+2-x\right|=\left|-1\right|=1\)
Dấu " = " xảy ra khi \(x-1\ge0;2-x\ge0\)
\(\Rightarrow x\ge1;x\le2\)
\(\Rightarrow1\le x\le2\)
Vậy \(MIN_B=1\) khi \(1\le x\le2\)
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(Ta\) \(có:\) \(A=|x-1|+|x-2|\)
\(mà:\) \(|x-1|\ge0\) \(và\) \(|x-2|\ge0\)
\(\RightarrowĐể\) \(A_{min}\) \(thì\) \(|x-1|và\) \(|x-2|\) \(nhỏ\) \(nhất\)
\(\Rightarrow x\in(1;2)\)
Áp dụng bất đẳng thức giá trị tuyệt đối ta được :
\(B=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=\left|1\right|=1\)
Dấu "=" xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{1;2\right\}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)
Vậy \(B_{min}=1\) khi \(x=1\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
/x-1/+/x-2/=/x-1/+/2-x/ luôn >= /x-1+2-x/
Mà /x-1+2-x/ = /1/=1
Vậy /x-1/+/x-2/ luôn lớn hơn hoặc bằng 1
Vậy GTNN của biểu thức là 1 khi /x-1/+/x-2/=1
Vì /x-1/ >= 0 với mọi x /
Vì /x-2/ >= 0 với mọi x /
Khi đó: x-2=0 => x=2
x-1=0 => x=1
Vậy GTNN của biểu thức là 1 khi x=1
x=2
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
\(B=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
Dấu "=" xảy ra khi: \(1\le x\le2\)