Người lạ ơi Nghe đi hay thì trả lời
\(\left(x^2-5\right)\left(x^2-10000\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2+6)(x2-64)=0
\(\Rightarrow\orbr{\begin{cases}x^2+6=0\\x^2-64=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-6\\x^2=64\end{cases}}\Rightarrow\orbr{\begin{cases}x=\Phi\\x=8\end{cases}}\)
Vậy x=8
\(\left(x-3\right)\left(x+5\right)+\left(x^2-25\right)=0\)\(0\Rightarrow\left(x-3\right)\left(x+5\right)+\left(x-5\right)\left(x+5\right)=0\)
\(\Rightarrow\)\(\left(x+5\right)\left(x-3+x-5\right)=0\)\(\Rightarrow\)\(\left(x+5\right)\left(2x-8\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x+5=0\\2x-8=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-5\\x=4\end{cases}}\)
a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)
=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)
=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)
=> \(x=\dfrac{-1}{11}\)
Đây toán 8 mà? :v
a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)
\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)
\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)
\(\Leftrightarrow\left(11+1\right)x=0\)
\(\Leftrightarrow11x+1=0;x=0\)
\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)
Vậy....
Hàm số \(T\left( x \right)\) xác định trên khoảng \(\left( {0; + \infty } \right)\).
Hàm số \(T\left( x \right)\) xác định trên từng khoảng \(\left( {0;0,7} \right),\left( {0,7;20} \right)\) và \(\left( {20; + \infty } \right)\) nên hàm số liên tục trên các khoảng đó.
Ta có: \(T\left( {0,7} \right) = 10000\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0,{7^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ + }} \left( {10000 + \left( {x - 0,7} \right).14000} \right) = 10000 + \left( {0,7 - 0,7} \right).14000 = 10000\\\mathop {\lim }\limits_{x \to 0,{7^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ - }} 10000 = 10000\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to 0,{7^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ - }} T\left( x \right) = 10000\) nên \(\mathop {\lim }\limits_{x \to 0,7} T\left( x \right) = 10000 = T\left( {0,7} \right)\).
Vậy hàm số \(T\left( x \right)\) liên tục tại điểm \({x_0} = 0,7\).
Ta có: \(T\left( {20} \right) = 10000 + \left( {20 - 0,7} \right).14000 = 280200\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ + }} \left( {280200 + \left( {x - 20} \right).12000} \right) = 280200 + \left( {20 - 20} \right).12000 = 280200\\\mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ - }} \left( {10000 + \left( {x - 0,7} \right).14000} \right) = 10000 + \left( {20 - 0,7} \right).14000 = 280200\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = 280200\) nên \(\mathop {\lim }\limits_{x \to 20} T\left( x \right) = 280200 = T\left( {20} \right)\).
Vậy hàm số \(T\left( x \right)\) liên tục tại điểm \({x_0} = 20\).
Vậy hàm số \(T\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\).
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)\left(x+y-6\right)=0\\y-x-3=0\left(3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\left(y+1\right)\left(1\right)\\x=6-y\left(2\right)\end{matrix}\right.\\y-x-3=0\left(3\right)\end{matrix}\right.\)
\(thế\left(1\right)\left(2\right)vào\left(3\right)\Rightarrow\left(x;y\right)\)
Kệ cái thằng ấy, nó có trả lời đc câu nào tử tế đâu. Câu **** ý mà, kệ nó đi
Lớp 8 nên sử dụng hằng đẳng thức
(=) X3 +3x2 +y3+5y2-x3-y3=0
(
nghe rồi ko hay
( x2 - 5 ) . ( x2 - 1000 ) = 0
\(\Rightarrow\orbr{\begin{cases}x^2-5=0\\x^2-1000=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=5\\x^2=1000\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\mp\sqrt{5}\\x=\mp\sqrt{1000}\end{cases}}\)