K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

em mới lớp 7

10 tháng 6 2019

Biến đổi phương trình về dạng \(y\left(2y^2+\left(x^2-3x\right)y+x+3x^2\right)=0\)

Nếu y=0 thì x là số nguyên tùy ý.

Xét \(y\ne0\)thì \(2y^2+\left(x^2-3x\right)y+x+3x^2=0\)(1)

\(\Delta=\left(x^2-3x\right)^2-8\left(x+3x^2\right)=x\left(x+1\right)^2\left(x-8\right)\)

Trường hợp x=-1 thì \(\Delta=0\),nghiệm kép của (1) là y=-1

Trường hợp \(x\ne-1\)để phương trình có nghiệm nguyên thì \(\Delta\)phải là số chính phương , tức là:

\(x\left(x-8\right)=k^2\left(k\in N\right)\Leftrightarrow\left(x-4-k\right)\left(x-4+k\right)=16\)

Vì \(k\in N\)nên \(x-4-k\le x-4+k\)và \(\left(x-4-k\right)+\left(x-4+k\right)=2\left(x-4\right)\)nên x-4-k và x-4+k cùng chẵn .

Lại có : 16=2.8=4.4=(-4).(-4) =(-2).(-8) .Xảy ra 4 trường hợp 

\(\hept{\begin{cases}x-4-k=a\\x-4+k=b\end{cases}với}\left(a,b\right)=\left(2;8\right),\left(4;4\right),\left(-4;-4\right),\left(-2;-8\right)\)

Giải ra ta có phương trình đã cho có các nghiệm nguyên (x,y) là (-1;-1)  ,  (8;-10)  ,  (0; k) với k nguyên.

P/s : lời giải trên chỉ là hướng dẫn , bạn có làm vào bài thì giải chi tiết ra nhé

29 tháng 8 2023

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

7 tháng 10 2017

nhân cái đầu với cái cuối

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

13 tháng 11 2023

a: \(y=\left(x+2\right)^2=x^2+4x+4\)

=>\(y'=2x+4\)

Đặt y'>0

=>2x+4>0

=>x>-2

Đặt y'<0

=>2x+4<0

=>x<-2

Vậy: Hàm số đồng biến trên \(\left(-2;+\infty\right)\) và nghịch biến trên \(\left(-\infty;-2\right)\)

b: \(y=\left(x^2-1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-1\right)'\cdot\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)

\(=2x\left(x+2\right)+x^2-1=2x^2+4x+x^2-1=3x^2+4x-1\)

Đặt y'>0

=>\(3x^2+4x-1>0\)

=>\(\left[{}\begin{matrix}x>\dfrac{-2+\sqrt{7}}{3}\\x< \dfrac{-2-\sqrt{7}}{3}\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2+4x-1< 0\)

=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)

c: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

\(=2x^2-3+4x\left(x+2\right)\)

\(=6x^2+8x-3\)

Đặt y'>0

=>\(6x^2+8x-3>0\)

=>\(\left[{}\begin{matrix}x>\dfrac{-4+\sqrt{34}}{6}\\x< \dfrac{-4-\sqrt{34}}{6}\end{matrix}\right.\)

Đặt y'<0

=>\(6x^2+8x-3< 0\)

=>\(\dfrac{-4-\sqrt{34}}{6}< x< \dfrac{-4+\sqrt{34}}{6}\)

Vậy: hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-4-\sqrt{34}}{6}\right);\left(\dfrac{-4+\sqrt{34}}{6};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-4-\sqrt{34}}{6};\dfrac{-4+\sqrt{34}}{6}\right)\)

d: \(y=\left(x-1\right)^2\left(x+2\right)\)

\(=\left(x^2-2x+1\right)\left(x+2\right)\)

\(=x^3+2x^2-2x^2-4x+x+2\)

=>\(y=x^3-3x+2\)

=>\(y'=3x^2-3\)

Đặt y'>0

=>\(3x^2-3>0\)

=>\(x^2>1\)

=>\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2-3< 0\)

=>x^2<1

=>-1<x<1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-\infty;-1\right)\)

Hàm số nghịch biến trên khoảng (-1;1)

4 tháng 4 2017

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

4 tháng 4 2017

Bài 2/

Ta có:  \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)

Vậy phương trình không có nghiệm nguyên dương.

2 tháng 6 2017

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)

\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)

Với \(y=0\)thì x nguyên tùy ý.

Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)

Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)

Với \(x=-1\) thì \(\Rightarrow y=-1\)

Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay

\(\left(x-8\right)x=k^2\)

\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)

\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)

Tới đây thì đơn giản rồi b làm tiếp nhé.

2 tháng 6 2017

( x+ y) ( x + y2) = ( x - y )3


 

13 tháng 11 2023

a: \(y=\left(x^2-1\right)^2\)

=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)

\(=4x\left(x^2-1\right)\)

Đặt y'>0

=>\(x\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>\(x>1\)

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)

Đặt y'<0

=>\(x\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)

=>0<x<1

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>x<-1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)

Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)

b: \(y=\left(3x+4\right)^3\)

=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)

\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

c: \(y=\left(x+3\right)^2\left(x-1\right)\)

=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)

=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)

=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)

=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)

=>\(y'=3x^2-2x+3\)

\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)

=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)

=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(2x+2\right)\left(x^3-1\right)\)

=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)

\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)

\(=2x^3-2+6x^3+6x^2\)

\(=8x^3+6x^2-2\)

Đặt y'>0

=>\(8x^3+6x^2-2>0\)

=>\(x>0,46\)

Đặt y'<0

=>\(8x^3+6x^2-2< 0\)

=>\(x< 0,46\)

Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)

Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)