Bài 1: Cho các số thực dương x,y,z. Chứng minh rằng:
\(\frac{x}{\sqrt{2xy+y^2}}+\frac{y}{\sqrt{2yz+z^2}}+\frac{z}{\sqrt{2zx+x^2}}\ge\sqrt{3}\)
Bài 2: Cho a,b,c là các số thực dương thỏa mãn: \(a+b+c=3\)
Tìm min của \(P=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\)
Bài 3: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ca}\)
Rảnh rỗi :D