K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

A B C O M D E H K I P

a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))

=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)

Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900

Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)

(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn

Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).

b) Gọi P là chân đường vuông góc từ D kẻ đến OB

Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)

Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD

=> ^IOP=^IDP (=^IDK) (4)

(3) + (4) => ^ICB=^IDK (đpcm).

c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn

=> ^DIH=^DCH hay ^DIH=^DCB.

Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB

Mà 2 góc trên đồng vị => IH // EB hay IH // EK

Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK

=> H là trung điểm DK (đpcm).

a) Ta có ABAB và ACAC là tiếp tuyến tại AA và BB của (O)(O)

⇒AB⊥OB⇒AB⊥OB và AC⊥OCAC⊥OC

Xét AOB và ΔAOCAOB và ΔAOC có:

OB=OC(=R)OB=OC(=R)

ˆABO=ˆACO=90oABO^=ACO^=90o

OAOA chung

⇒ΔAOB=ΔAOC⇒ΔAOB=ΔAOC (ch-cgv)

⇒AB=AC⇒AB=AC và có thêm OB=OC⇒AOOB=OC⇒AO là đường trung trực của BCBC

Mà H là trung điểm của BC

⇒A,H,O⇒A,H,O thẳng hàng

Tứ giác ABOCABOC có ˆABO+ˆACO=90o+90o=180oABO^+ACO^=90o+90o=180o

⇒A,B,C,O⇒A,B,C,O cùng thuộc đường tròn đường kính OAOA.

16 tháng 4 2020

a) Xét tam giác OAH và tam giác OCH, có:

   OA=OC=R ;  OH chung  ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)

=> Tam giác OAH = tam giác OCH (ch-cgv)  => AH=HC (2 cạnh tương ứng)

<=> H là trung điểm cạnh AC (đpcm)

b)  Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC

      Xét tam giác OAM và tam giác OCM, có:  OA=OC=R ;  MA=MC ; OM chung

=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)

<=> MC là tiếp tuyến của (O)  (đpcm)

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

DB,DM là các tiếp tuyến

Do đó: DB=DM

Xét (O) có

EM,EC là các tiếp tuyến

Do đó: EM=EC

Chu vi tam giác ADE là:

\(C_{ADE}=AD+DE+AE\)

\(=AD+DM+ME+AE\)

\(=AD+DB+CE+AE\)

\(=AB+AC=2\cdot AB\)

14 tháng 1 2017

Đáp án B

* Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB = AC; DB = DM; EM = EC

suy ra: DE = DM + ME = DB + EC.

* Chu vi tam giác ADE là:

AD + AE + DE = AD + AE + DB + EC

= (AD + DB ) + ( AE + EC ) = AB + AC = 2AB ( vì AB = AC )

1: ΔODE cân tại O

mà ON là trung tuyến

nên ON vuông góc DE

góc OBA=góc ONA=góc OCA=90 độ

=>O,N,B,A,C cùng thuộc đường tròn đường kính OA

2: góc BOC=2*góc AOC=2*góc ANC

3: Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

=>AD/AO=AH/AE

=>ΔADH đồng dạng với ΔAOE

=>góc ADH=góc AOE

=>góc HOE+góc HDE=180 độ

=>DHOE nội tiếp

24 tháng 7 2017

a) Dễ thấy tứ giác IBAC là tứ giác nội tiếp. Vậy thì \(\widehat{CIA}=\widehat{CBA};\widehat{BIA}=\widehat{BCA}\)

Mà \(\widehat{CBA}=\widehat{BCA}\Rightarrow\widehat{CIA}=\widehat{BIA}\) hay IA là phân giác góc BIC.

b) Do KD // AB nên \(\widehat{EDK}=\widehat{EAB}\) (Đồng vị)

Mà \(\widehat{EAB}=\widehat{ICB}\) (Góc nội tiếp cùng chắn cung IB)

Nên \(\widehat{IDH}=\widehat{ICH}\Rightarrow\) tứ giác IHDC nội tiếp. Vậy thì \(\widehat{HID}=\widehat{HCD}\) (cùng chắn cung HD)

Mà \(\widehat{HCD}=\widehat{BED}\) (góc nội tiếp cùng chắn cung BD)

nên \(\widehat{HID}=\widehat{BED}\Rightarrow\) IH // EB

Xét tam giác EKD có I là trung điểm ED, IH // EK nên IH là đường trung bình hay H là trung điểm DK.