Tổng 3 số nguyên dương liên tếp bằng 1000.Tìm 3 số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
______________________________________________
li-ke cho mk nhé bn nguyễn thị huyền thương
Lời giải:
Gọi 2 số đó là $a$ và $b$. Theo bài ra thì:
$3(a+b)=2ab$
$\Leftrightarrow 3a+3b-2ab=0$
$\Leftrightarrow 6a+6b-4ab=0$
$\Leftrightarrow 2a(3-2b)-3(3-2b)=-9$
$\Leftrightarrow (2a-3)(3-2b)=-9$
Đến đây là dạng pt tích đơn giản rồi. Bạn chỉ cần xét TH thôi/
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Câu 1: 3;5;7
Câu 2:đề bài cho sai
Câu 3: Đáp số =2;3;5;7 vì 2+3+5+7=17
Câu 4: số 311141111 là số nguyên tố
số 1010101 là số nguyên tố
Đúng thì nhớ ko thì thôi
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.
Tổng của 5 số nguyên dương liên tiếp có dạng: \(\frac{\left(a+a+4\right)\cdot5}{2}=5\left(a+2\right)⋮5\)
(a và a+4 là số đầu và số cuối khi xếp từ bé đến lớn)
Làm tương tự với tổng của 7 số và 9 số
Suy ra số cần tìm chia hết cho 5,7,9
Mà BCNN(5,7,9)=315 nên số cần tìm là 315
Số các số nguyên dương thỏa mãn bài toán lập thành một cấp số cộng với số hạng đầu u 1 = 3 và công sai d = 3
Do đó
Chọn C.
Gọi số bé nhất là a => Các số tiếp theo lần lượt là a + 1 ; a + 2 ( a thuộc N* )
Vì tổng của ba số là 1000 => a + a + 1 + a + 2 = 1000
<=> 3a + 3 = 1000
<=> 3a = 997
<=> a = 332, (3) (loại vì a là số nguyên dương)
Vậy không có 3 số nguyên dương liên tiếp có tổng bằng 1000.