tìm x,y,z biết :
x + y + z = 37
x + y = 13
y + z = 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có 6x=4y=-2z và x-y-z=27
\(\Rightarrow6x.\dfrac{1}{12}=4y.\dfrac{1}{12}=-2z.\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-6}=\dfrac{x-y-z}{2-3-\left(-6\right)}=\dfrac{27}{5}\)
\(\Rightarrow x=2.\dfrac{27}{5}=10,8\)
\(y=3.\dfrac{27}{5}=16,2\)
\(\Rightarrow z=-6.\dfrac{27}{5}=-32,4\)
b) Ta có 13y=6z
\(\Rightarrow\dfrac{y}{6}=\dfrac{z}{13}\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{13}\) và x.y.z=576(1)
Đặt \(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{13}=k\Rightarrow x=4k;y=6k;z=13k\)(2)
Thay (2) vào (1) ta được
\(4k.6k.13k=576\)
\(\Rightarrow312.k^3=576\)
mk làm tới đây thì chia k đc
Theo đề ta có :
x(x+y+z) + y(x+y+z) + z(x+y+z) = -12 + 18 + 30
=> (x+y+z) (x+y+z) = 36
=> (x+y+z)\(^2=36\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
* Trường hợp x+y+z=-6
\(\Rightarrow x=x\left(x+y+z\right):\left(x+y+z\right)=-12:-6=2\)
\(\Rightarrow y=y\left(x+y+z\right):\left(x+y+z\right)=18:-6=-3\)
\(\Rightarrow z=z\left(x+y+z\right):\left(x+y+z\right)=30:-6=-5\)
*Trường hợp x+y+z=6
\(\Rightarrow x=x\left(x+y+z\right):\left(x+y+z\right)=-12:6=-2\)
\(\Rightarrow y=y\left(x+y+z\right):\left(x+y+z\right)=18:6=3\)
\(\Rightarrow z=z\left(x+y+z\right):\left(x+y+z\right)=30:6=5\)
Vậy :....
x ( x + y + z ) = - 12 ; y ( y + z +x ) = 18 ; z (z + x + y) =30
=> x ( x + y + z ) + y ( y + z +x ) + z (z + x + y) = - 12 + 18 + 30
=> x ( x + y + z ) + y ( x + y + z ) + z ( x + y + z ) = 36
=> ( x + y + z ) ( x + y + z ) = 36
=> ( x + y + z )2 = 36
=> x + y + z = 6 hoặc x + y + z = - 6
* TH1: x + y + z = 6
=> x . 6 = - 12 => x = - 2
y . 6 = 18 => y = 3
z . 6 = 30 => z = 5
* TH2: x + y + z = - 6
=> x . ( - 6) = - 12 => x = 2
y . ( - 6) = 18 => y = - 3
z . ( - 6) = 30 => z = - 5
Vậy ( x ; y ; z ) = ( - 2 ; 3 ; 5 ) ; ( 2 ; - 3 ; - 5 )
Ta có: x(x + y + x) = -12
y(x + y + z) = 18
z(x + y + z) = 30
cộng vế với vế, ta được :
x(x + y + z) + y(x + y + z) + z(x + y + z) = -12 + 18 + 30
=> (x + y + z)(x + y + z) = 36
=> (x + y + z)2 = 62
=> (x + y + z) = \(\pm\)6
Với x + y + z = 6
=> x .6 = -12
=> x = -12 : 6
=> x = -2
còn lại tương tự
Cộng theo vế 3 dữ kiện của bài toán ta được:
\(\left(x+y+z\right)^2=36\)
<=> \(x+y+z=\pm6\)
TH1: x+y+z=6
=> x= -12:6=-2
y = 18:6=3
z= 30:6=5
TH2 : x+y+z =-6
=> x= -12:-6=2
y= 18:-6=-3
z= 30:-6=-5
Vậy các cặp số hữu tỉ (x;y;z) là : \(\left(-2;3;5\right);\left(2;-3;-5\right)\)
=> x(x+y+z)+y(x+y+z)+z(x+y+z)=-12+18+30=36
=(x+y+z)(x+y+z)=36
=(x+y+z)2=62=(-6)2
TH1: x+y+z=6
=> x=-12:6=-2
y=18:6=3
z=30:6=5
TH2: x+y+z=-6
=> x=-12:(-6)=2
y=18:(-6)=-3
z=30:(-6)=-5
=> x + y + z / 2 + 3 + 5 = 30/10=3
=> x = 3 x2 = 6
y = 3 x3 = 9
z = 3 x5 =15
áp dụng t/c dãy tỉ số=
x/2=y/3=z/5=(x+y+z)/(2+3+5)=30/10=3
suy ra
x=3.2=6
y=3.3=9
z=3.5=15
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{z+y+z}{2+3+5}=\dfrac{30}{10}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\\\dfrac{y}{3}=3\\\dfrac{z}{5}=3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=3.5=15\end{matrix}\right.\)
z = 24 ; x =7 ;y=6
Z = 37 - 13 = 24 .
Y = 30 - 24 = 6
X = 13 - 6 = 7