cho\(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2012}\)
cmr Schia het cho 65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
S=5+5^2+5^3+5^4+...+5^2012
S=(5+5^2+5^3+5^4)+...+5^2008(5+5^2+5^3+5^4)
S=780+......+5^2008.780
S=780(1+......+5^2008)
S=65.12.(1+.....+5^2008) chia hết cho 65
Vậy S chia hết cho 65.
1, a,b ko chia hết cho 3 nhưng có cùng số dư khi chia cho 3
=> a,b cùng chia 3 dư 1 hoặc 2
sau đó xét 2 TH;
=> ab chia 3 dư 1 => ab-1 là bội của 3 (ĐPCM)
tất cả các số hang cua dãy đều chia hết cho 5 nên S 3 chấm 65
S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012 (2012 số)
S = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) +...+ (52009 + 52010 + 52011 + 52012) (503 nhóm)
S = (5 + 52 + 53 + 54) + 54(5 + 52 + 53 + 54) +....+ 52008(5 + 52 + 53 + 54)
S = 780 + 54.780 +...+ 52008.780
S = 780.(1 + 54 +...+ 52008) chia hết cho 65 (Vì 780 chia hết cho 65)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
trong dãy trên có 2012 số
vì 2012 chia hết cho 13 nên ta chia 2012 số đó ra thành một số nhóm có 13 số bất kì
mỗi số đều chia hết cho 5 và tổng đó chi hết cho 13 (vì có 13 số hạng là bội của 5)
mà (13; 5) = 1 => S chia hết cho 65
S=5+52+53+...+52012
=(5+52+53+54)+(55+56+57+58)+...+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...+52008(5+52+53+54)
=780+54.780+...+52008.780
=780(1+54+...+52008)
Vì 780 chia hết cho 65 => 780(1+54+...+52008) chia hết cho 65 hay S chia hết cho 65
Vậy...