K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

Trên cùng một nửa mặt phẳng bờ \(BC\)không chứa \(A\)lấy tia \(Cx\)sao cho \(\widehat{BAD}=\widehat{BCx}\).

Kéo dài \(AD\)cắt \(Cx\)tại \(E\).

Xét \(\Delta DAB\)và \(\Delta DCE\)có:

\(\widehat{ADB}=\widehat{CDE}\)(vì đối đỉnh).

\(\widehat{BAD}=\widehat{BCE}\)(hình vẽ trên).

\(\Rightarrow\Delta DAB~\Delta DCE\left(g.g\right)\).

\(\Rightarrow\widehat{ABD}=\widehat{CED}\)(2 góc tương ứng).

\(\Rightarrow\widehat{ABD}=\widehat{CEA}\)

Và \(\frac{AD}{CD}=\frac{DB}{DE}\)(tỉ số đồng dạng).

\(\Rightarrow AD.DE=BD.CD\)\(\left(1\right)\).
Xét \(\Delta BAD\)và \(\Delta EAC\)có:

\(\widehat{BAD}=\widehat{EAC}\)(giả thiết).

\(\widehat{ABD}=\widehat{AEC}\)(chứng minh trên).

\(\Rightarrow\Delta BAD~\Delta EAC\left(g.g\right)\).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AE}\)(tỉ số đồng dạng).

\(\Rightarrow AD.AE=AB.AC\)\(\left(2\right)\).

Từ \(\left(1\right)\)và \(\left(2\right)\).

\(\Rightarrow AD.AE-AD.DE=AB.AC-BD.CD\).

\(\Rightarrow AD\left(AE-DE\right)=AB.AC-BD.CD\).

\(\Rightarrow AD.AD=AB.AC-BD.CD\).

\(\Rightarrow AD^2=AB.AC-BD.CD\)(điều phải chứng minh).

29 tháng 5 2021

A B C D E x

27 tháng 3 2016

Trên tia AD lấy điểm E sao cho ^BEA = ^BCA.

 Khi đó ^BED = ^ACD và ^BDE = ^ADC nên hai tam giác BDE và ADC đồng dạng

 suy ra BD/AD = DE/DC

 suy ra AD.DE = DB.DC (1). 

Gọi F là điểm đối xứng với C qua đường thẳng AD

vì AD là phân giác ^BAC nên F thuộc AB,

 từ tính chất đối xứng suy ra ^DFA = ^DCA và AF = AC,

 vì ^DCA = ^BCA = ^BEA nên ^DFA = ^BEA,

 cùng với ^A chung nên hai tam giác DFA và BEA đồng dạng,

 suy ra AD/AB = AF/AE = AC/AE, suy ra AD.AE = AB.AC (2). 

Từ (2) và (1) theo vế thì có AD.(AE - DE) = AB.AC - DB.DC, suy ra AD^2 = AB.AC - DB.DC. 

16 tháng 4 2018
cho hỏi bài này và chứng minh theo tính chất của BĐT cho tam giác ABC CD là giân giác của tam giác cm: CD^2
17 tháng 7 2021

a) DB?, DC?

Ta có:\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(tính chất đường phân giác)

\(\dfrac{DB}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

Mặt khác \(\dfrac{DB}{3}=\dfrac{DC}{5}\)

\(\dfrac{DB}{3}=\dfrac{DC}{5}=\dfrac{DB+DC}{3+5}=\dfrac{BC}{8}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\dfrac{DB}{3}=\dfrac{3}{2}\\ \Rightarrow DB=\dfrac{3\times3}{2}=\dfrac{9}{2}=4.5\left(cm\right)\)

Và \(\dfrac{DC}{5}=\dfrac{3}{2}\\ \Rightarrow DC=\dfrac{3\times5}{2}=\dfrac{15}{2}=7,5\left(cm\right)\)

Vậy DB=4,5(cm), DC= 7,5 cm

28 tháng 7 2016

Bạn tự vẽ hình nhé :))

Từ B kẻ tia Bx cắt AD tại E sao cho góc ABE = góc ADC.

\(\Delta AEB\)và \(\Delta ACD\)có:  góc ABE = góc ADC (cách dựng) và góc BAE = góc DAC (gt)

\(\Rightarrow\)\(\Delta AEB\)đồng dạng \(\Delta ACD\)\(\Rightarrow\)\(\frac{AB}{AD}=\frac{AE}{AC}\)\(\Rightarrow\)\(AB.AC=AE.AD\)(1)

\(\Rightarrow\)góc BED = góc ACD.

\(\Delta ACD\)và \(\Delta BED\)có:  góc ACD = góc BED (cmt) và góc ADC = góc BDE (đối đỉnh)

\(\Rightarrow\)\(\Delta ACD\)đồng dạng \(\Delta BED\)\(\Rightarrow\)\(\frac{DB}{AD}=\frac{DE}{DC}\)\(\Rightarrow\)\(DB.DC=DE.AD\)(2)

Lấy (1) - (2) vế theo vế ta được \(AB.AC-DB.DC=AD\left(AE-DE\right)\)\(\Leftrightarrow\)\(AD^2=AB.AC-DB.DC\)(đpcm).

28 tháng 7 2016

Cảm ơn bạn nhiều

8 tháng 4 2019

a) HS tự chứng minh.

b) HS tự chứng minh.

c) Từ a, suy ra AB.AC = AD.AI  (1)

Từ b, suy ra BD.CD = AD.ID (2)

Từ (1) và (2), ta chứng minh được AD2 = AB.AC- DB.DC