K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hình thang

mà góc B=góc C

nên BDEC là hình thang cân

b: Xét ΔDEB có

N là trung điểm của DE

M là trung điểm của DB

Do đó: MN là đường trung bình

=>MN//EB và MN=EB/2(1)

Xét ΔECB có

P là trung điểm của EC

Q là trung điểm của BC

Do đó: PQ là đường trung bình

=>PQ//BE và PQ=BE/2(2)

từ (1) và (2) suy ra MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔDEC có

N là trung điểm của DE
P là trung điểm của EC
Do đó: NP là đường trung bình

=>NE=DC/2=NM

=>NMQP là hình thoi

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0
21 tháng 10 2021

Bài 1: 

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của DC

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

11 tháng 1 2018

A B C D E N M P Q H

a) Xét \(\Delta ADE\) có :

\(AD=AE\left(gt\right)\)

=> \(\Delta ADE\) cân tại A

Mà có : \(\Delta ABC;\Delta ADE\) \(\widehat{A}:chung\)

=> \(\widehat{ADE}=\widehat{ABC}\)

Mà : 2 góc này ở vị trí đồng vị

=> \(\text{DE // BC}\)

=> Tứ giác BDEC là hình thang

Mặt khác : \(\widehat{ABC}=\widehat{ACB}\left(t.c\Delta cân\right)\)

=> Tứ giác BDCE là hình thang cân

b) Xét \(\Delta DEC\) có :

\(DN=NE\left(gt\right)\)

\(EP=PC\left(gt\right)\)

=> NP là đường trung bình trong \(\Delta DEC\)

=> \(\text{ NP// CD}\)\(NP=\dfrac{1}{2}CD\) (1)

Xét \(\Delta BDC\) có :

\(BM=MD\left(gt\right)\)

\(BQ=QC\left(gt\right)\)

=> MQ là đường trung bình trong \(\Delta BDC\)

=> \(\text{MQ // CD}\)\(MQ=\dfrac{1}{2}CD\) (2)

Từ (1) và (2) => \(\left\{{}\begin{matrix}NP=MQ\\\text{NP//MQ}\end{matrix}\right.\)

=> Tứ giác MNPQ là hình bình hành

Lại xét \(\Delta BDE\) có :

\(DM=MB\left(gt\right)\)

\(DN=NE\left(gt\right)\)

=> \(NM\) là đường trung bình trong \(\Delta BDE\)

=> \(NM=\dfrac{1}{2}BE\)

Ta thấy : \(BD=CE\) (tính chất chất hình thang cân BDCE)

=> \(NP=NM\)

Do đó : Tứ giác MNPQ là hình thoi.

a: Xét tứ giác ACBD có 

M là trung điểm của AB

M là trung điểm của CD

Do đó: ACBD là hình bình hành

b: Xét ΔABC có 

N là trung điểm của BC

P là trung điểm của AC

Do đó: NP là đường trung bình

=>NP=AB/2 và NP//AB

Xét tứ giác ABNQ có 

NQ//AB

AQ//BN

Do đó: ABNQ là hình bình hành

Suy ra: NQ=AB

=>NQ=2NP

=>P là trung điểm của NQ

Xét tứ giác ANCQ có

P là trung điểm của AC

P là trung điểm của NQ

Do đó: ANCQ là hình bình hành

mà NA=NC

nên ANCQ là hình thoi