tìm số nguyên x,y biết
x^2+165=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+165=y^2\)
=> \(x^2-y^2=-165\)
=> \(\left(x-y\right)\left(x+y\right)=-165\)
mà x,y nguyên => x-y , x+y thuộc ước nguyên -165
=>...
thảo hải !!!!!!!!!!!!^-^^-^
mi củng hay hị .hihi .mình chộ rành hây-------/-----/
a) 2y - 12y = 0
\(\Rightarrow\) y ( 2-12) = 0
\(\Rightarrow\) y . (-10) =0
\(\Rightarrow\) y = 0 : (-10) = 0
b) (y-7)(y-8) = 0
\(\Rightarrow\orbr{\begin{cases}y-7=0\\y-8=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0+7\\y=0+8\end{cases}\Rightarrow}\orbr{\begin{cases}y=7\\y=8\end{cases}}}\)
c) x + x.2+x.3+x.4+...+x.10 = 165
\(\Rightarrow\) x ( 1+2+3+.....+8+9+10) = 165
\(\Rightarrow\)x . \(\frac{\left(1+10\right).10}{2}\)=165
\(\Rightarrow\) x . 55 = 165
\(\Rightarrow x=\frac{165}{55}=3\)
Can you k for me ,Lê Thị Kim Chi!
a) \(2y-12y=0\)
\(\Leftrightarrow-10y=0\)
\(\Leftrightarrow y=0:\left(-10\right)\)
\(\Leftrightarrow y=0\)
b) \(\left(y-7\right)\left(y-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-7=0\\y-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=0+7\\y=0+8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=7\\y=8\end{cases}}\)
c) \(x+x.2+x.3+......+x.10=165\)
\(\Leftrightarrow x.\left(1+2+3+.....+10\right)=165\)
\(\Leftrightarrow x.55=165\)
\(\Leftrightarrow x=165:55\)
\(\Leftrightarrow x=3\)
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
bang 189
mk biết cách làm và rât muốn trả lời bn nhưng rất tiếc mk là anti Yoona