K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Đây mà là Tiếng Anh ak ?

20 tháng 1 2018

Đây là toán chứ bạn 

26 tháng 10 2023

\(5x^2+2xy+y^2-16x+16=0\)

=>\(x^2+2xy+y^2+4x^2-16x+16=0\)

=>\(\left(x+y\right)^2+\left(2x-4\right)^2=0\)

=>\(\left\{{}\begin{matrix}x+y=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

19 tháng 8 2019

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

26 tháng 3 2017

Ta có : x= (121-7y)/5
Để x nguyên dương thì 121-7y chia hết cho 5 và  0 < y <18 (y nguyên dương)
để 121-7y chia hết cho 5 thì y=3 hoặc y=13
khi y=13 => x=6
ki y=3 => x= 20

25 tháng 7 2017

Đặt \(xy-12x+15y\)là (*)

Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)

Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)

Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)

Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)

\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)

\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)

Với \(x=3;y=2\)thay vào (*)  ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)

Với \(x=5;y=3\)thay vào (*)  ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)

Vậy .....

17 tháng 4 2018

2314654564

2 tháng 6 2016

Toán cô Hương BG ấy gì thảo nào quen quen

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)

Xét phương trình theo nghiệm x.

\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)

\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)

Vì x, y nguyên dương nên 

\(\Rightarrow\sqrt{2y}=a\)

\(\Rightarrow y=2n^2\)

\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)

Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)

<=> \(\left(x-y-2\right)^2=8y\)

<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)

=> \(\frac{y}{2}\)là số chính phương

CMTT x/2 là số chính phương