K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Câu 1: 

x + 5/4 = 0 => x = -5/4

x - 19/7 = 0 => x = 19/7

Lập bảng: 

P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?

x                  -5/4                                      19/7                 
x + 5/4          -         0                    +                    /           + 
x - 19/7          -         /                     -                    0           +
( x + 5/4 ) ( x - 19/7 )          +         0                   -                    0           +

Suy ra   -5/4 <   x   <   19/7

Hay     -1,25 <   x   <  2,(714285)

Mặt khác x thuộc Z nên x = -1, 0, 1, 2

Câu 2:

            2xy + 4y   = 6

           2 (xy + 2y) = 6

          => xy + 2y = 6 / 2 = 3

         => xy + 2y = 3

        => y (x + 2) = 3

Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)

Mik khỏi lập bảng!

Từ bảng trên ta có y = {-3; -1; 1; 3}

Câu 3:

     x + y = 8, x + z = 10, y + z  = 12

=> (x + y) + (x + z)    +  (y + z) =  8 + 10 + 12 = 30

=> 2(x + y + z) = 30

=> x + y + z = 15

Đến đây thì dễ rồi! ^^

Câu 4:

(x + 3) = +5 Hoặc -5

Nhưng đề hỏi là x^3 > 0 = .....

Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0

Ta có x + 3 = 5

Từ đó có x = 8

Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....

 * ♥ * Xong! * ♫ *

 * ♥ * nha! * ♫ *

 

 

13 tháng 2 2016

C1: Lập bảng xét dấu tích:

x + 5/4 = 0 => x = -5/4

x - 19/7 = 0 => x = 19/7

Ta có:

x                  -5/4                                      19/7                 
x + 5/4          -         0                    +                    /           + 
x - 19/7          -         /                     -                    0           +
( x + 5/4 ) ( x - 19/7 )          +         0                   -                    0           +

Vậy -5/4 < x < 19/7

31 tháng 3 2017

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

31 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

 |x-2y| =5 <=> có 2TH x-2y=5 hoặc x-2y = -5 <=> x= 5+2y hoặc x = -5+2y. 
TH1: x=5+2y <=> bạn thay giá trị này của x vào pt 2x=3y => y=-10,x= -15. Muốn tìm z thì bạn thay x hoặc y vào pt ở đề bài, x hoặc y thay vào đều được: z= -6 
TH2:Tương tự x=-5+2y <=> y=10, x= 15,z= 6

5 tháng 1 2016

đẻ A max=>x+y+z max=>x+y+z=2009+2008+2007=6024

=>t+h min=>t+h=1+2=3

=>A max= 6024-3=6021

đê A min=>x+y+z min,t+h max=>x+y+z=1+2+3=6

t+h=2008+2009=4017

=>min A=6-4017=-4011

16 tháng 11 2016

Ta có

xy + yz + xz \(\le\)x2 + y2 + z2

<=> 3(xy + yz + xz) \(\le\)(x + y + z)2 = 9

<=> xy + yz + xz \(\le\)3

Vậy GTLN là 3 đạt được khi x = y = z = 1

17 tháng 11 2016

sai rui