Chứng minh rằng nếu a,b,c, là chiều dài 3 cạnh của 1 tam giác thì:
ab+bc>= a^2+b^2+c^2<2(ab+bc+ca)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức tam giác có a+b>c
<=>ac+bc > c2 (c>0)
<=>a+b
Tương tự có:ab+cb>b2 ac+ab >a2ab+bc>b2,ac+ab>a2
Cộng các bất đẳng thức trên ra điều phải chứng minh
2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)
Cho a, b, c là chiều dài ba cạnh của một tam giác. Chứng minh rằng : a2 + b2 + c2 < 2(ab + bc + ca).
Vì a; b; c là độ dài 3 cạnh của 1 tam giác nên ta có : \(a+b>c;a+c>b;b+c>a\)
\(\Rightarrow c\left(a+b\right)>c.c\Rightarrow ac+bc>c^2\)
\(\Rightarrow b\left(a+c\right)>b.b\Rightarrow ab+bc>b^2\)
\(\Rightarrow a\left(b+c\right)>a.a\Rightarrow ab+ac>a^2\)
Cộng vế với vế ta được :
\(\left(ac+bc\right)+\left(ab+bc\right)+\left(ab+ac\right)>a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ac\right)>a^2+b^2+c^2\) (đpcm)
Nhân 2 vế với a>0 ta có
ab+ac>a^2 (1)
bc+ba>b^2 (2)
ac+cb>c^2 (3)
Cộng hai vế của (1) , (2) , (3) ta được 2(ab+bc+ca)>a^2+b^2+c^2 ( đpcm)
ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca
<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)
dấu = xảy ra khi a =b=c
a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2
b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2
a−c<b<=>a2+c2−2ac<b2a−c<b<=>a2+c2−2ac<b2
Cộng các vế ta có
2(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)