K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

hdgnfhtfnhfytrh

bn tam khảo link này nha: https://olm.vn/hoi-dap/detail/79277830725.html [ bn cố gắng viết giống vậy na :)) ]

12 tháng 4 2020

Gửi từ 5 năm trc thì trả lời bây giờ có nghĩa gì nữa đâu bạn

31 tháng 12 2018

a) Vì AB = 3 x AM, AC = 3 x AN, nên MB = 2/3 x AB, NC = 2/3 x AC.

Từ đó suy ra : dt (MBC) = 2/3 x dt (ABC) (chung chiều cao từ C

dt (NCB) = 2/3 x dt (ABC) (chung chiều cao từ B)

Vậy dt (MBC) = dt (NCB) mà tam giác MBC và tam giác NCB có chung đáy BC, nên chiều cao từ M bằng chiều cao từ N xuống đáy BC hay MN song song với BC. Do đó BMNC là hình thang.

Từ MB = 2/3 x AB, nên dt (MBN) = 2/3 x dt (ABN) (chung chiều cao từ N) hay dt (ABN) = 2/3 x dt (MBN).

Hơn nữa từ AC = 3 x AN, nên NC = 2 x AN, do đó dt (NBC) = 2 x dt (ABN) (chung chiều cao từ B) ; suy ra dt (NBC) = 3/2 x 2 x dt (MBN) = 3 x dt (MBN).

Mà tam giác NBC và tam giác MBN có chiều cao bằng nhau (cùng là chiều cao của hình thang BMNC). Vì vậy đáy BC = 3 x MN.

b) Gọi BN cắt CM tại O. Ta sẽ chứng tỏ AI cũng cắt BN tại O. Muốn vậy, nối AO kéo dài cắt BC tại K, ta sẽ chứng tỏ K là điểm chính giữa của BC (hay K trùng với I).

Theo phần a) ta đã có dt (NBC) = 2 x dt (ABN). Mà tam giác NBC và tam giác ABN có chung đáy BN, nên chiều cao từ C gấp 2 lần chiều cao từ A xuống đáy BN. Nhưng đó là chiều cao tương ứng của hai tam giác BCO và BAO có chung đáy BO, vì vậy dt (BCO) = 2 x dt (BAO)

Tương tự ta cũng có dt (BCO) = 2 x dt (CAO).

Do đó dt (BAO) = dt (CAO). Hai tam giác BAO và CAO có chung đáy AO, nên chiều cao từ B bằng chiều cao từ C xuống đáy AO. Đó cũng là chiều cao tương ứng của hai tam giác BOK và COK có chung đáy OK, vì vậy dt (BOK) = dt (COK). Mà hai tam giác BOK và tam giác COK lại chung chiều cao từ O, nên hai đáy BK = CK hay K là điểm chính giữa của cạnh BC. Vậy điểm K trùng với điểm I hay BN, CM, AI cùng cắt nhau tại điểm O.

3 tháng 2 2022

a) -Xét △ABM có: \(EG\)//\(BM\) (gt)

=>\(\dfrac{BE}{AE}=\dfrac{MG}{AG}\) (định lí Ta-let).

=>\(BE.AG=AE.MG\).

b) -Ta có: \(BM\)//\(d\) (gt) ; \(CN\)//\(d\) (gt)

=>\(BM\)//\(CN\).

- Xét △BMD và △CND có:

\(\widehat{BMD}=\widehat{CND}\) (\(BM\)//\(CN\) và so le trong).

\(BD=CD\) (D là trung điểm AB).

\(\widehat{BDM}=\widehat{CDN}\) (đối đỉnh).

=>△BMD = △CND (c-g-c).

=>\(MD=ND\) (2 cạnh tương ứng).

*\(GM+GN=GD-MD+GD+ND=2GD\)

 

16 tháng 6 2021

giải hộ mk đi mk k đúng hết cho mk cần trc 3 h chiều nay nha

6 tháng 1 2023

em cần gấp