(2x+5) (3y -13) = 31
xy + 2x + y + 11 = 0
xy -x - y -1 = 0
1/x + 1/y = 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng : (A + B)3 = A3 + 3A2B + 3AB2 + B3
11) \(\left(x^2+\frac{3}{xy}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{3}{xy}+3\cdot x^2\cdot\left(\frac{3}{xy}\right)^2+\left(\frac{3}{xy}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{3}{xy}+3\cdot x^2\cdot\frac{9}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^4}{xy}+\frac{27\cdot x^2}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^3}{y}+\frac{27}{y^2}+\frac{27}{x^3y^3}\)
12) \(\left(x^2+\frac{2}{x}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{2}{x}+3\cdot x^2\cdot\left(\frac{2}{x}\right)^2+\left(\frac{2}{x}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{2}{x}+3\cdot x^2\cdot\frac{4}{x^2}+\frac{8}{x^3}\)
\(=x^6+\frac{6\cdot x^4}{x}+\frac{12\cdot x^2}{x^2}+\frac{8}{x^3}\)
\(=x^6+6x^3+12+8x^3\)
13) \(\left(3y+\frac{x}{2}\right)^3=\left(3y\right)^3+3\cdot3y^2\cdot\frac{x}{2}+3\cdot3y+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3\)
\(=27y^3+\frac{9y^2\cdot x}{2}+9y+\frac{x^2}{4}+\frac{x^3}{8}\)
14) \(\left(1\frac{1}{2}xy+1\right)^3=\left(\frac{3}{2}xy+1\right)^3=\left(\frac{3}{2}xy\right)^3+3\cdot\left(\frac{3}{2}xy\right)^2\cdot1+3\cdot\frac{3}{2}xy\cdot1^2+1^3\)
\(=\frac{27}{8}x^3y^3+3\cdot\frac{9}{4}x^2y^2+\frac{9}{2}xy+1\)
\(=\frac{27}{8}x^3y^3+\frac{27}{4}x^2y^2+\frac{9}{2}xy+1\)
15) \(\left(\frac{x^2}{2}+\frac{2}{y}\right)^3=\left(\frac{x^2}{2}\right)^3+3\cdot\left(\frac{x^2}{2}\right)^2\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\left(\frac{2}{y}\right)^2+\left(\frac{2}{y}\right)^3\)
\(=\frac{x^6}{8}+3\cdot\frac{x^4}{4}\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\frac{4}{y^2}+\frac{8}{y^3}\)
\(=\frac{x^6}{8}+\frac{3x^4}{2y}+\frac{6x^2}{y^2}+\frac{8}{y^3}\)
Còn 5 bài cuối áp dụng tương tự như thế :)
\(4.\left(3x+y\right)^2+\left(x+y\right)^2\)
\(=3x^2+6xy+y^2+x^2-2xy+y^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2-4xy+2y^2\)
\(7.\left(x-4\right)^2+\left(x+4y\right)\)
\(=x^2-8x+16+x+4y\)
\(=x^2-7x+16+4y\)
\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\)
\(=4x^2+28x+49+4x^2+12x+9\)
\(=8x^2+40x+58\)
\(12.-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\)
\(=-x^2-2x-1+x^2+2x-1\)
\(=4x\)
\(5.-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\)
\(=-x^2-10-25+x^2+6x-9\)
\(=-16x-16\)
\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=4x^2+12x+9-25x^2+30x-9\)
\(=-21x^2+42x\)
\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\)
\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\)
\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\)
\(=-5x^2-2xy-10y^2\)
4: =9x^2+6xy+y^2+x^2-2xy+y^2
=10x^2+4xy+2y^2
5: =-x^2-10x-25-x^2+6x-9
=-4x-34
7; \(=x^2-8xy+16y^2+x+4y\)
10: \(=4x^2+28x+49+4x^2+12x+9\)
=8x^2+40x+58
11: =-4x^2+4xy-y^2-x^2-6xy-9y^2
=-5x^2-2xy-10y^2
a) |x + 25| + |-y + 5| =0
=> |x + 25| = 0 hoặc |-y + 5| = 0
Từ đó bạn cứ bỏ giá trị tuyệt đối rồi tính nha! Mấy bài khác cũng vậy
1. | x + 1| + (y + 2)2 = 0
Mà (y + 2)2 \(\ge\) 0
Đẳng thức khi . y + 2 \(\ge\) 0
y \(\ge\) - 2
. x + 1 = 0
. x = -1
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
a) Ta có bảng sau:
x-1 | -5 | 5 | 1 | -1 |
y+4 | -1 | 1 | 5 | -5 |
x | -4 | 6 | 2 | 0 |
y | -5 | -3 | 1 | -9 |
Vậy:
b) Ta có bảng sau:
2x+3 | 11 | -11 | 1 | -1 |
y-2 | 1 | -1 | 11 | -11 |
x | 4 | -7 | -1 | -2 |
y | 3 | 1 | 13 | -9 |
Vậy: ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+4) = 5`
`=> (x-1)(y+4) \in \text {Ư(5)} = +-1; +-5`
Ta có bảng sau:
\(x-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+4\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | `2` | `6` | `0` | `-4` |
`y` | `-9` | `-5` | `1` | `-8` |
Vậy, ta có các cặp `x,y` thỏa mãn `{2; -9}; {6; -5}; {0; 1}; {-4; -8}`