K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

Áp dụng : (A + B)3 = A3 + 3A2B + 3AB2 + B3

11) \(\left(x^2+\frac{3}{xy}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{3}{xy}+3\cdot x^2\cdot\left(\frac{3}{xy}\right)^2+\left(\frac{3}{xy}\right)^3\)

\(=x^6+3\cdot x^4\cdot\frac{3}{xy}+3\cdot x^2\cdot\frac{9}{x^2y^2}+\frac{27}{x^3y^3}\)

\(=x^6+\frac{9x^4}{xy}+\frac{27\cdot x^2}{x^2y^2}+\frac{27}{x^3y^3}\)

\(=x^6+\frac{9x^3}{y}+\frac{27}{y^2}+\frac{27}{x^3y^3}\)

12) \(\left(x^2+\frac{2}{x}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{2}{x}+3\cdot x^2\cdot\left(\frac{2}{x}\right)^2+\left(\frac{2}{x}\right)^3\)

\(=x^6+3\cdot x^4\cdot\frac{2}{x}+3\cdot x^2\cdot\frac{4}{x^2}+\frac{8}{x^3}\)

\(=x^6+\frac{6\cdot x^4}{x}+\frac{12\cdot x^2}{x^2}+\frac{8}{x^3}\)

\(=x^6+6x^3+12+8x^3\)

13) \(\left(3y+\frac{x}{2}\right)^3=\left(3y\right)^3+3\cdot3y^2\cdot\frac{x}{2}+3\cdot3y+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3\)

\(=27y^3+\frac{9y^2\cdot x}{2}+9y+\frac{x^2}{4}+\frac{x^3}{8}\)

14) \(\left(1\frac{1}{2}xy+1\right)^3=\left(\frac{3}{2}xy+1\right)^3=\left(\frac{3}{2}xy\right)^3+3\cdot\left(\frac{3}{2}xy\right)^2\cdot1+3\cdot\frac{3}{2}xy\cdot1^2+1^3\)

\(=\frac{27}{8}x^3y^3+3\cdot\frac{9}{4}x^2y^2+\frac{9}{2}xy+1\)

\(=\frac{27}{8}x^3y^3+\frac{27}{4}x^2y^2+\frac{9}{2}xy+1\)

15) \(\left(\frac{x^2}{2}+\frac{2}{y}\right)^3=\left(\frac{x^2}{2}\right)^3+3\cdot\left(\frac{x^2}{2}\right)^2\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\left(\frac{2}{y}\right)^2+\left(\frac{2}{y}\right)^3\)

\(=\frac{x^6}{8}+3\cdot\frac{x^4}{4}\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\frac{4}{y^2}+\frac{8}{y^3}\)

\(=\frac{x^6}{8}+\frac{3x^4}{2y}+\frac{6x^2}{y^2}+\frac{8}{y^3}\)

Còn 5 bài cuối áp dụng tương tự như thế :)

26 tháng 7 2023

\(4.\left(3x+y\right)^2+\left(x+y\right)^2\) 

\(=3x^2+6xy+y^2+x^2-2xy+y^2\) 

\(=9x^2+6xy+y^2+x^2-2xy+y^2\)

\(=10x^2-4xy+2y^2\) 

\(7.\left(x-4\right)^2+\left(x+4y\right)\) 

\(=x^2-8x+16+x+4y\) 

\(=x^2-7x+16+4y\) 

\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\) 

\(=4x^2+28x+49+4x^2+12x+9\) 

\(=8x^2+40x+58\)

\(12.-\left(x+1\right)^2-\left(x-1\right)^2\) 

\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\) 

\(=-x^2-2x-1+x^2+2x-1\)  

\(=4x\) 

\(5.-\left(x+5\right)^2-\left(x-3\right)^2\) 

\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\) 

\(=-x^2-10-25+x^2+6x-9\) 

\(=-16x-16\) 

\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\) 

\(=4x^2+12x+9-25x^2+30x-9\) 

\(=-21x^2+42x\)

\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\) 

\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\) 

\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\) 

\(=-5x^2-2xy-10y^2\)

4: =9x^2+6xy+y^2+x^2-2xy+y^2

=10x^2+4xy+2y^2

5: =-x^2-10x-25-x^2+6x-9

=-4x-34

7; \(=x^2-8xy+16y^2+x+4y\)

10: \(=4x^2+28x+49+4x^2+12x+9\)

=8x^2+40x+58

11: =-4x^2+4xy-y^2-x^2-6xy-9y^2

=-5x^2-2xy-10y^2

 

a) |x + 25| + |-y + 5| =0

=> |x + 25| = 0 hoặc |-y + 5| = 0

Từ đó bạn cứ bỏ giá trị tuyệt đối rồi tính nha! Mấy bài khác cũng vậy

10 tháng 6 2018

1. | x + 1| + (y + 2)2 = 0
Mà (y + 2)2 \(\ge\) 0
Đẳng thức khi . y + 2 \(\ge\) 0
y \(\ge\) - 2
. x + 1 = 0
. x = -1

13 tháng 6 2018

cảm ơn bn

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

13 tháng 7 2023

a) Ta có bảng sau:

x-1 -5 5 1 -1
y+4 -1 1 5 -5
x -4 6 2 0
y -5 -3 1 -9

Vậy: 

b) Ta có bảng sau:

2x+3 11 -11 1 -1
y-2 1 -1 11 -11
x 4 -7 -1 -2
y 3 1 13 -9

Vậy: ...

`@` `\text {Ans}`

`\downarrow`

`a)`

`(x-1)(y+4) = 5`

`=> (x-1)(y+4) \in \text {Ư(5)} = +-1; +-5`

Ta có bảng sau:

\(x-1\)\(1\)\(5\)\(-1\)\(-5\)
\(y+4\)\(-5\)\(-1\) \(5\) \(1\)
   \(x\)`2``6``0``-4`
   `y``-9``-5``1``-8`

Vậy, ta có các cặp `x,y` thỏa mãn `{2; -9}; {6; -5}; {0; 1}; {-4; -8}`