K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)-3\)

\(=\left(a+1\right)\left(a+4\right)\left(a+2\right)\left(a+3\right)-3\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)-3\)

\(=\left(a^2+5a+5\right)^2-1-3\)

\(=\left(a^2+5a+5\right)^2-4\)

\(=\left(a^2+5a+7\right)\left(a^2+5a+3\right)\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
29 tháng 8 2021

\(a^4+a^3+a^2+a\)

\(=a^3\left(a+1\right)+a\left(a+1\right)\)

\(=\left(a+1\right)\left(a^3+a\right)\)

nha !!!

29 tháng 8 2021

Trả lời:

\(a^4+a^3+a^2+a\)

\(=\left(a^4+a^3\right)+\left(a^2+a\right)\)

\(=a^3\left(a+1\right)+a\left(a+1\right)\)

\(=a\left(a+1\right)\left(a^2+1\right)\)

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(a^4-a^3-a^2+a\)

\(=a^3\left(a-1\right)-a\left(a-1\right)\)

\(=\left(a-1\right)\left(a^3-a\right)\)

24 tháng 9 2023

\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :

Đặt : \(x^2+2x=a\)

Do đó ta có đa thức :

\(a.\left(a+4\right)+3=a^2+4a+3\)

\(=a^2+a+3a+3\)

\(=a\left(a+1\right)+3\left(a+1\right)\)

\(=\left(a+1\right)\left(a+3\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

 

24 tháng 9 2023

Hoặc bạn có thể đặt \(x^2+2x+2=t\)

Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

\(P=\left(t-2\right)\left(t+2\right)+3\)

\(P=t^2-4+3\)

\(P=t^2-1\)

\(P=\left(t-1\right)\left(t+1\right)\)

\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)

8 tháng 7 2021

a) (x + 1)(x + 2)(x + 3)(x + 4) - 24

= [(x + 1)(x + 4)].[(x + 2)(x + 3)] - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24 

= (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 24

= (x2 + 5x + 5)2 - 1 - 24 = (x2 + 5x + 5)2 - 25 

= (x2 + 5x)(x2 + 5x + 10) 

 = x(x + 5)(x2 + 5x + 10)

31 tháng 7 2016

=a^4(a+1)+a^2(a+1)+(a+1)

=(a+1)(a^4+a^2+1)

31 tháng 7 2016

a5+a4+a3+a2+a+1

=a4(a+1)+a2(a+1)+(a+1)

=(a+1)(a4+a2+1)

27 tháng 10 2021

1: \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-2x^2-4x+x+2}{x+2}\)

\(=2x^3-x^2-2x+1\)

27 tháng 10 2021

1) \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-4x+x+2}{x+2}\)

=\(2x^3-x^2-2x+1 \)

2) \(2x^3-x^2-2x+1\)

\(\left(2x^3-2x\right)-\left(x^2-1\right)\)

\(2x\left(x^2-1\right)-\left(x^2-1\right)\)

=\(\left(x^2-1\right)\left(2x-1\right)\)