K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

\(xy+3x-6=0\)

\(x\left(y+3\right)-y-3=6-3\)

\(x\left(y+3\right)-y+3=3\)

\(\left(y+3\right)\left(x-1\right)=3\)

Làm tiếp đi mình không biết tạo bảng trên olm xin lỗi bạn

21 tháng 1 2023

xy+x+y=4

(x+1)y+x=4

(x+1)y+x-4=0

=>x+1=0

=>x=-1

=>y+1=0

=>y=-1

@Taoyewmay

=>x(y+1)+y+1=5

=>(x+1)(y+1)=5

=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)

1 tháng 12 2023

Để giải phương trình xy + 2x - y = 9, ta có thể sử dụng phương pháp hoán vị.

 

Đặt u = x - 1 và v = y + 2, ta có:

 

(u + 1)(v - 2) + 2(u + 1) - (v - 2) = 9

 

Mở ngoặc và đơn giản hóa, ta được:

 

uv + u + 2v - 4 + 2u + 2 - v + 2 = 9

 

Kết hợp các thành phần tương tự, ta có:

 

uv + 3u + v = 9

 

Thêm 3 cả hai vế của phương trình, ta có:

 

uv + 3u + v + 3 = 12

 

Nhân cả hai vế của phương trình với 4, ta có:

 

4uv + 12u + 4v + 12 = 48

 

Nhóm các thành phần tương tự, ta có:

 

(4u + 1)(v + 3) = 48

 

Ta cần tìm các cặp giá trị nguyên dương (u, v) sao cho (4u + 1)(v + 3) = 48.

 

Các cặp giá trị nguyên dương (u, v) thỏa mãn phương trình trên là:

 

(1, 45), (3, 15), (5, 9), (9, 5), (15, 3), (45, 1)

 

Quay lại định nghĩa của u và v, ta có:

 

x - 1 = u → x = u + 1

y + 2 = v → y = v - 2

 

Vậy, các cặp giá trị nguyên dương (x, y) thỏa mãn phương trình ban đầu là:

 

(2, 43), (4, 13), (6, 7), (10, 3), (16, 1), (46, -1)

 

Tuy nhiên, để thỏa mãn y ∈ N, ta chỉ lấy các giá trị y là số tự nhiên dương.

 

Vậy, các cặp giá trị nguyên dương (x, y) thỏa mãn phương trình ban đầu là:

 

(6, 7), (10, 3)

xy+2x-y=9

=>x(y+2)-y-2=7

=>x(y+2)-(y+2)=7

=>(x-1)(y+2)=7

\(\Leftrightarrow\left(x-1;y+2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;5\right);\left(8;-1\right);\left(0;-9\right);\left(-6;-3\right)\right\}\)

mà x,y đều là số tự nhiên

nên \(\left(x,y\right)\in\left(2;5\right)\)

1 tháng 6 2017

hình như sai giả thiết

12 tháng 3 2023

`-3x=2y `

`=> x/2 = -y/3 `

AD t/c của dãy tỉ số bằng nhau ta có

`x/2 =-y/3 = (x-y)/(2+3) = 6/5`

`=>{(x=2*6/5 = 12/5),(y=-3*6/5 =-18/5):}`

a) `6/x =-3/2`

`=>x =6 :(-3/2) = 6*(-2/3)=-4`

12 tháng 3 2023

`b)`\(-3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{-3}\)

Áp dụng t/c của DTSBN , ta đc :

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{x-y}{2+3}=\dfrac{6}{5}\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{6}{5}\\\dfrac{y}{-3}=\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=-\dfrac{18}{5}\end{matrix}\right. \)

`a)`

`6/x=-3/2`

`x=6:(-3/2)`

`x=6*(-2/3)`

`x=-4`

 

12 tháng 12 2021

7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36

Nên theo tính chất của dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6

 \(\Rightarrow\)x=6.5=30

     y=6.6=36

     z=6.7=42

vậy x=30,y=36,z=42

 

 

25 tháng 1 2022

\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,y+3\in Z\\x-1,y+3\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
y+3-3-131
x0-224
y-6-40-2

Vậy \(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-;\right);\left(2;0\right);\left(4;-2\right)\right\}\)

 

25 tháng 1 2022

\(xy+3x-y=6\)

\(x\left(y+3\right)-\left(y+3\right)=3\)

\(\left(x-1\right)\left(y+3\right)=3\)

Đến đây em tự xét các trường hợp nha

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
27 tháng 11 2021

\(\Leftrightarrow2P=6x+4y+\dfrac{12}{x}+\dfrac{16}{y}\\ \Leftrightarrow2P=\left(\dfrac{12}{x}+3x\right)+\left(\dfrac{16}{y}+y\right)+3\left(x+y\right)\\ \Leftrightarrow2P\ge2\sqrt{36}+2\sqrt{16}+3\cdot6=12+8+18=38\\ \Leftrightarrow P\ge19\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x^2=12\\y^2=16\\x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

24 tháng 12 2021

\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)

Ta có bảng:

x-1-1-313
y+3-3-131
x0-224
y-6-40-2

 

Vậy\(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-4\right);\left(2;0\right);\left(4;-2\right)\right\}\)