phân tích đa thức thành nhân tủ giúp em vs ạ
a; (x+3)^4 +(x-1)^4 - 16
b; (7-x)^4 +(5-x)^4 - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)
\(\Leftrightarrow\left(x-1.5\right)^2\left[\left(x-1.5\right)^4+2\right]=0\)
\(\Leftrightarrow x-1.5=0\)
hay x=1,5
b) Ta có: \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
\(a,=\left(x-3\right)\left(x+3\right)\\ b,=\left(2x-5\right)\left(2x+5\right)\\ c,=\left(x^3-y^3\right)\left(x^3+y^3\right)\\ =\left(x-y\right)\left(x+y\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\\ d,=\left(3x+y\right)^2\\ e,=-\left(x-3\right)^2\\ f,=\left(x+2y\right)^2\)
\(a.\\ x^2-9=\left(x-3\right)\left(x+3\right)\\ b.\\ 4x^2-25=\left(2x\right)^2-5^2\\ =\left(2x-5\right)\left(2x+5\right)\\ c.\\ x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\\ =\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\\ =\left(x-y\right)\left(x+y\right)\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)\\ \)
\(d.\\ 9x^2+6xy+y^2=\left(3x\right)^2+2\cdot3\cdot x\cdot y+y^2\\ =\left(3x+y\right)^2\\ e.\\ 6x-9-x^2=-\left(x^2-6x+9\right)\\=-\left(x-3\right)^2\\ f.\\ x^2+4y^2+4xy=x^2+4xy+\left(2y\right)^2=\left(x+2y\right)^2\)
a. \(2x^{^2}\left(2x^{^3}-3x+1\right)\)
b. \(\left(4m-25n\right)\left(4m+25n\right)\)
b: \(4m^2-25n^2=\left(2m-5n\right)\left(2m+5n\right)\)
x3 - 2x2 + 2x2 - 4x - 2x +4
x2 ( x - 2 ) +2x (x - 2 ) + 2 (x -2 )
(x -2) (x2 + 2x + 2 )
(x - 2) (x + 1 )2
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
4x4 - 21 x2y2 + y4
= (4x4 + 4x2y2 + y4) - 25x2y2
= [(2x2)2 + 2x2 . 2 . y2 + (y2)2] - 25x2y2
= (2x2 + y2) - 25x2y2
= (2x2 + y2 - 5xy) (2x2 + y2 + 5xy)
78: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)-2b\left(a-c\right)\)
\(=b\left(2a-2c\right)-2b\left(a-c\right)\)
=0
a/ = x4 + 36x2 +81 +12x3 + 108x + 18x2 + x4 +1 + 4x2 + 2x2 - 4x - 4x3 -16 = 2x4 + 8x3 + 60x2 + 104x + 66 = 2(x4 + 4x3 + 30x2 + 52x + 33)