tìm \(x\in Z\)\(đểA=x^5+x^4+1\)là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
a) Do \(x^2-2x-6\) là số chính phương đặt \(x^2-2x-6=a^2\)
\(\Rightarrow x^2-2x+1-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-a^2=7\)
\(\Rightarrow\left(x-a-1\right)\left(x+a-1\right)=7\)
Do: \(x-a-1< x+a-1\) nên:
\(\left\{{}\begin{matrix}x-a-1=1\\x+a-1=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=8\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=10\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\a=3\end{matrix}\right.\)
Vậy: ...
Bài 1:a) |x - 3| = 2x + 4
=> \(\orbr{\begin{cases}x-3=2x+4\\x-3=-2x-4\end{cases}}\)
=> \(\orbr{\begin{cases}x-2x=4+3\\x+2x=-4+3\end{cases}}\)
=> \(\orbr{\begin{cases}-x=7\\3x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-7\\x=-\frac{1}{3}\end{cases}}\)
Vậy ...
b) Để M có giá trị nguyên thì 2n - 7 \(⋮\)n - 5
<=> 2(n - 5) + 3 \(⋮\)n - 5
<=> 3 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy ...
Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1
Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố
Do đó trong ba p, q, r số phải có là 3
\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)
\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)
Vậy...
câu 1 x^2 +3x=xx+3x=x(x+3) vì x+3 chia hết cho x+3 nên x(x+3) chia hết cho x+3 hay x^2+3x chia hết cho x+3