1,Cho x và y là số nguyên . Hãy chứng tỏ rằng ;
a, nếu x-y>0 thì x>y
b, Nếu x>y thì x-y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ta có: (a-b) + (b-a) = a-b+b-a = 0
Vậy (a-b) và (b-a) là hai số đối nhau
2.
a, (x-y) + (m-n) = x-y +m - n = x + m - y - n = (x+m) - (y+n)
b, (x-y) - (m-n) = x-y -m +n = x+n -y -m = (x+n) -(y+m)
A + B = a - b + b - a
A + B= a + (-b) + b + (-a)
A + B= a + (-a) + b + (-b)
A + B = 0
Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.
= x - y + m - n
= x + (-y) + m + (-n)
= (x + m) + (-y) + (-n)
= (x + m) +[- (y + n)]
= (x + m) - (y + n)
= x - y - m + n
= x + (-y) + (-m) + n
= (x + n) + (-y) + (-m)
= (x + n) + [- (y + m)]
= (x + n) - (y + m)
Ta có: x + 6y chia hết cho 17 => 5(x + 6y) chia hết cho 17
=> 5x + 30y chia hết cho 17
Lại có : 5x + 30y chia hét cho 17
17y chia hết cho 17
=> 5x + 30y + 17 chia hết cho 17
5x + 47y chia hết cho 17
Vậy 5x + 47y chia hết cho 17
Đúng thì tick nha! Hà My Trần
ta có 5x+7y chia hết cho 17 <=> x+6y chia hết cho 17
ta đặt M= 4(x+6y)-(5x+7y)
=>M=17y chia hết cho 17
Mà 5x+7y chia hết cho 17 ; M cũng chia hết cho 17
=> x+6y chia hết cho 17 vì (17;4)=1
vậy 5x+7y chia hết cho 17<=> x+6y chia hết cho 17
lưu ý: chia hết và bộ cũng giống nhau
a) Xét :
\(\Rightarrow|a|=-a\)
\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)
\(\Rightarrow|a|=a\)
\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)
Vậy ta có đpcm
b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?
Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .
Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)
Áp dụng cm ở phần a), ta có:
\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn
\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn
Mà \(2011\)là số lẻ
\(\Rightarrow\)Mẫu thuẫn với giả thiết
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrowđpcm\)
nếu x-y>0 suy ra x-y là một số dương nên x= y=q ( q là một số dương)