K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Có điểm C' ?

5 tháng 5 2017

Hình như là điểm C đó cậu.Chắc mình gõ nhầm

27 tháng 12 2015

hình tự vẽ nha bạn 

a) tam giác ABC có E là tđ của AB,D là tđ của AC

=> ED là đtb của tam giác ABC

=> ED// BC và ED=1/2BC (1)

=> tứ giác BEDC là hình thang

b) tam giác GBC có M là tđ của GB,N là tđcủa GC

=> MN là đtb của tam giác GBC

=> MN//BC và MN=1/2BC (2)

từ (1),(2)=> ED//MN và ED=MN

=> tứ giác MEDN là hbh

c) tứ giác MEDN là hcn <=> MEDN là hbh có 2 đường chéo bằng nhau 

                                        <=> EN=DM

mà EN=2/3EC,DM=2/3DB=> EC=BD

hình thang BEDC có EC=BD=> BEDC là h thang cân => góc EBC=DCB

=> tam giác ABC cân tại A 

vậy tam giác ABC cân tại A thì ......

d) kẻ đường cao AH

gọi O là gđ của AH và ED

tam giác AHB có E là tđ của AB,EO//BH (ED//BC)

=> O là tđ của AH

=> OH=1/2AH

Sbedc=1/2(ED+BC).OH

=1/2.(1/2BC+BC).1/2AH

=1/2.3/2BC.1/2AH

=3/4BC.1/2AH

=3/8BC.AH

=1/2.AH.BC.3/4

=3/4 Sabc

 

28 tháng 12 2015

bạn tự vẽ hình nha

a)Trong tam giác ABC có: E là trung điểm của AB; D là trung điểm của AC

=> ED là đường trung bình của ABC

=> ED//BC và ED=\(\frac{1}{2}\)BC (1)

=> tứ giác BEDC là hình thang

b) Trong tam giác CBG có: M là trung điểm của GB; N là trung điểm của GC

=> MN là đường trung bình của tam giác CBG

=> MN//BC và MN=\(\frac{1}{2}\)BC (2)

Từ (1) và (2) => ED//MN và ED = MN

=> tứ giác MEDN là hình bình hành

c) Tứ giác MEDN là hcn <=> MEDN là hbh

Có 2 đường chéo bằng nhau <=> EN = DM

Mà EN = \(\frac{2}{3}\)EC; DM = \(\frac{2}{3}\)DB

Lại có: hình thang BEDC có EC = BD

=> BEDC là hình thang cân tại A

Vậy tam giác ABC tại thì tứ giác MEDN là hcn

19 tháng 7 2018

A B C G M N E F d I

Qua 2 điểm B và C kẻ đường thẳng song song với đường thẳng d cắt tia AG lần lượt tại E và F

Gọi AI là trung tuyến của \(\Delta\)ABC

Theo ĐL Thales ta có các tỉ số: \(\frac{AB}{AM}=\frac{AE}{AG};\frac{AC}{AN}=\frac{AF}{AG}\)

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AE+AF}{AG}=\frac{2AE+IE+IF}{AG}\)

Dễ thấy \(\Delta\)BEI=\(\Delta\)CFI (g.c.g) => IE = IF (2 cạnh tương ứng) => IE + IF = 2.IE

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{2AE+2IE}{AG}=\frac{2AI}{AG}=\frac{3AG}{AG}=3\)

\(\Leftrightarrow\left(\frac{AB}{AM}+\frac{AC}{AN}\right)^2=9\ge4.\frac{AB.AC}{AM.AN}\)(BĐT Cauchy)

\(\Leftrightarrow\frac{AB.AC}{AM.AN}\le\frac{9}{4}\Leftrightarrow AM.AN\ge\frac{4.AB.AC}{9}\)

\(\Rightarrow S_{AMN}\ge\frac{4}{9}.S_{ABC}\Leftrightarrow\frac{S_{ABC}}{S_{AMN}}\le\frac{9}{4}\)(đpcm).

Đẳng thức xảy ra <=> \(\frac{AB}{AM}=\frac{AC}{AN}\)<=> MN // BC <=> d // BC.

8 tháng 4 2020

1

toánlop5Nhãn
2 tháng 3 2023

giúp mình với ạ

 

a: Xét ΔABC có

BN là trung tuyến

G là trọng tâm

=>BG=2/3BN

=>BG=2GN

b: Vì G là trọng tâm của ΔABC

nên M là trung điểm của CB