Cho hình vuông ABCD. Trên cạnh AB lấy E và trên cạnh AD lấy F sao cho AE=AF. Vẽ \(AH\perp BF\) \(\left(H\in BF\right)\), AH cắt CD và BC lần lượt tại M và N
a) CMR: Tứ giác AEMD là hình chữ nhật
b) Biết \(S_{\Delta BCH}\)gấp 4 lần \(S_{\Delta AEH}\).
CMR: AC = 2.EF
c) CM: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Có thể sử dụng tam giác đồng dạng và định lí Ta-lét nhé
a) Xét tam giác AFB và tam giác DMA có:
\(\widehat{ABF}=\widehat{DAM}\) (Cùng phụ với góc \(\widehat{BAM}\) )
\(\widehat{FAB}=\widehat{MDA}=90^o\)
AB = AD
\(\Rightarrow\Delta AFB=\Delta DMA\) ( Cạnh góc vuông, góc nhọn kề)
\(\Rightarrow AF=DM\)
\(\Rightarrow DM=AE\)
Xét tứ giác AEMD có AE song song và bằng DM nên nó là hình bình hành.
Lại có \(\widehat{EAD}=90^o\) nên AEMD là hình chữ nhật.
b) Đặt \(\frac{AE}{EB}=k\); Ta có các tỉ số: \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=k\)
Ta có: \(\frac{S_{AEH}}{S_{ABH}}=\frac{k}{k+1}\)
Ta có \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{S_{BCH}}{S_{BNH}}=\frac{k}{k+1}\)
Vậy thì \(\frac{S_{AEH}}{S_{ABH}}=\frac{S_{CBH}}{S_{BNH}}\Rightarrow\frac{S_{AEH}}{S_{ABH}}=\frac{4S_{AEH}}{S_{BNH}}\Rightarrow\frac{S_{BNH}}{S_{BAH}}=\frac{1}{4}\)
\(\Rightarrow\frac{AH}{HN}=\frac{1}{4}\Rightarrow\frac{AF}{BN}=\frac{1}{4}\)
Ta có: \(\frac{AF}{BN}=\frac{AF}{BC+CN}=\frac{AF}{\left(k+1\right)AF+\left(\frac{k+1}{k}\right)AF}=\frac{1}{4}\)
\(\Rightarrow k=1\)
Vậy thì AE = EB hay E, F là trung điểm AB, AC.
Từ đó suy ra \(EF=\frac{BD}{2}=\frac{AC}{2}\)
Vậy AC = 2EF.
c) Ta thấy ngay \(\Delta ADM\sim\Delta NCM\left(g-g\right)\)
\(\Rightarrow\frac{AM}{MN}=\frac{AD}{CN}\Rightarrow AM.CN=MN.AD\)
\(\Rightarrow AM\left(AD+CN\right)=AN.AD\)
\(\Rightarrow AM.BN=AD.AD\)
\(\Rightarrow AM^2.BN^2=AN^2.AD^2\)
\(\Rightarrow AM^2\left(AD^2+BN^2-AD^2\right)=AN^2.AD^2\)
\(\Rightarrow AM^2\left(AN^2-AD^2\right)=AN^2.AD^2\)
\(\Rightarrow AM^2.AN^2=AM^2.AD^2+AN^2.AD^2\)
\(\Leftrightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
phần b bạn giải dài quá
ta có tam giác BAF đồng dạng với BHA (g.g)
=> af/ah=bf/ab=ab/hc
<=> af/ah=ab/hb
<=> ae/ah=bc/hb
mà hbc=bah
suy ra hbc đồng dạng với hae (cgc)
mà ti le diện tích đồng dạng bằng bình phương tỉ lệ đồng dạng
suy ra (ae/bc)^2=1/4
=>ae/ab=1/2