K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Định lí Menaulause ý

NM
14 tháng 2 2021

A B C M P N H

Kẻ CH song song MP và H thuộc AB 

ta có 

\(\hept{\begin{cases}\frac{NB}{NC}=\frac{MB}{MH}\\\frac{PC}{PA}=\frac{MH}{MA}\end{cases}\Rightarrow\frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PA}=}\frac{MA}{MB}.\frac{MB}{MH}.\frac{MH}{MA}=1\)vậy ta có dpcm

5 tháng 3 2018

Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau: a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB) Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC) AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC) PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1 b)PO/PC= S(AOP)/ S(APC) MO/MA= S(CMO)/ S(CAM) NO/NB= S(ANO)/ ABN) Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)

15 tháng 9 2019

Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau:
a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB)
Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC)
AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC)
PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1
b)PO/PC= S(AOP)/ S(APC)
MO/MA= S(CMO)/ S(CAM)
NO/NB= S(ANO)/ ABN)
Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)

20 tháng 9 2018

A B C G M A' B' C' D E F H K N P

+) Gọi AP là đường trung tuyến của \(\Delta\)ABC, giao điểm của tia AM và BC là D. Qua M kẻ đường thẳng song song với AP, nó cắt BC tại N.

Xét \(\Delta\)PDA có: M thuộc AD; N thuộc PD; MN // AP => \(\frac{MN}{AP}=\frac{DM}{DA}\Rightarrow\frac{DM}{DA}=\frac{MN}{3.GP}\) (ĐL Thales) (*)

Xét \(\Delta\)GA'P có: M thuộc GA'; N thuộc PA'; MN // GP => \(\frac{MN}{GP}=\frac{MA'}{GA'}\), thế vào (*) được

\(\frac{DM}{DA}=\frac{1}{3}.\frac{MA'}{GA'}\). Chứng minh tương tự: \(\frac{EM}{EB}=\frac{1}{3}.\frac{MB'}{GB'};\frac{FM}{FC}=\frac{1}{3}.\frac{MC'}{GC'}\)

Suy ra \(\frac{1}{3}\left(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}\right)=\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\)

\(\Rightarrow\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\left(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\right)\)(1)

+) Gọi giao điểm của BM và AC là E; CM với AB là F. Qua M kẻ 2 đường thẳng song song với AB và BC, chúng cắt AC lần lượt tại H và K.

Áp dụng ĐL Thales, ta có các tỉ số: 

\(\frac{DM}{DA}=\frac{CK}{AC};\frac{FM}{FC}=\frac{AH}{AC};\frac{EM}{EB}=\frac{EH}{EA}=\frac{EK}{EC}=\frac{EH+EK}{EA+EC}=\frac{HK}{AC}\)

Cộng các tỉ số trên, ta được: \(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}=\frac{CK+HK+AH}{AC}=\frac{AC}{AC}=1\)(2)

+) Từ (1) và (2) => \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\) (đpcm).