cho tam giác ABC vuông tại A đường phân giác của góc B cắt AC tại E kẻ EH vuông góc với BC (H thuộc BC) K là giao điểm của BA va HE
Chứng minh rằng tam giác ABE= tam giác HBE
Chứng minh AH song song với KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tg ABE và tg HBE có BE chung
^EAB = ^EHB = 90
^ABE = ^HBE do BE là pg của ^ABC (gt)
=> tg ABE = tg HBE (ch-gn)
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
EB chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH; EA=EH
=>EB là trung trực của AH
c: EA=EH
mà EA<EK
nên EH<EK
d: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
mà BE là phân giác
nen BE vuông góc KC
Bạn tự vẽ hình nha.
a,Xét tg ABE và tg HBE:
^BAE=^BHE=90*
^ABE=^HBE(BE là pg)
BE chung
=>tg ABE= tg HBE(ch-gn)
b,+,tg ABC có:^BAC=90*,^ABC=60*
=>^C=30*
+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)
=>^HEB=60*
Mà HK // BE
=>^HBE=^EHK=60*(slt)
+, tg CHE có:^EHC=90*,^C=30*
=>HEC=60*
+,tg HEK có:
^EHK=60*,^HEC(^HEK)=60*
=>TG HEK đều(dhnb)
Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.
c, +,CM:tg AEM=tg HEC(cgv-gnk)
=>AM=HC
+,CM:BM=BC
+,CM:tg BMI=tgBCI(cgc)
=>NM=NC
Xong r nha. Chúc bạn học tốt.
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung