K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

x/2=y/3=z/6 và xyz=36

suy ra x3/6=y2/6=z/6

suy ra x<y<z , để x3/6=y2/6=z/6 suy ra x=2,y=3, z=6

thử lại: xyz=2*3*6=36

3 tháng 1 2018

Vì \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{6}\)và xyz=36 nên

Đặt   \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{6}\)=k

=> x=2k; y=3k;z=6k mà xyz= 36

hay 2k.3k.6k=36

            36.k3=36

                 k3=36:36

                 k3=13

                    k=1

Do đó: x= 1.2=2; y=1.3=3; z=1.6=6

KO HIỂU J THÌ CỨ HỎI MIK NHA~_~

14 tháng 8 2016

tim x,y,z biet 4/x+1=2/y-2=3/z+2 va xyz=12 

\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)và \(xyz=12\)

1 tháng 9 2017

ap dung tinh chat cua day ti so = nhau ta co 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(=>\frac{x.y.z}{2.3.5}=\frac{810}{30}=27\)

\(=>\frac{x}{2}=27=>x=54\)

\(=>\frac{y}{3}=27=>y=81\)

\(=>\frac{z}{5}=27=>z=135\)

vay \(x=54\)\(y=81\)\(z=135\)

1 tháng 9 2017

  x:2=y:3 => x=(2y)/3 (1) 
y:3= z:5 => y= (3z)/5(2) 
thế (2) vào (1) ra x=(6z)/15 
Có xyz=810 => ((6z)/15 x (3z)/5 x z)=810 => (6/25)z^3 -810=0 ( Bấm máy tính pt lập phương này ra) 
=> z=15, y=9, z=6 

4 tháng 2 2017

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y+z}{2-3+4}=\dfrac{8}{3}\)

Do đó: x=16/3; y=8; z=32/3

c: Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

=>x=2k; y=3k; z=4k

Ta có: xyz=3

\(\Leftrightarrow2k\cdot3k\cdot4k=3\)

\(\Leftrightarrow24k^3=8\)

=>k=1/2

=>x=1; y=3/2; z=2

3 tháng 12 2017

5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)

TT=>VT2>=VP2

6.\(1+\sqrt{y-1}\ge1\)

\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)

=>VT1>=VP1

10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)

3 tháng 12 2017

chi. cậu trả lời j vào câu hỏi của tớ vậy???

30 tháng 5 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2+y^2+z^2}{5^2+7^2+3^2}=\frac{585}{83}=7,05\)

Vì \(7,05\) không phải là số nguyên nên đề bài sai. Bạn xem lại nhé!