x/2=y/3=z/6 va xyz=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tim x,y,z biet 4/x+1=2/y-2=3/z+2 va xyz=12
\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)và \(xyz=12\)
ap dung tinh chat cua day ti so = nhau ta co
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(=>\frac{x.y.z}{2.3.5}=\frac{810}{30}=27\)
\(=>\frac{x}{2}=27=>x=54\)
\(=>\frac{y}{3}=27=>y=81\)
\(=>\frac{z}{5}=27=>z=135\)
vay \(x=54\), \(y=81\), \(z=135\)
x:2=y:3 => x=(2y)/3 (1)
y:3= z:5 => y= (3z)/5(2)
thế (2) vào (1) ra x=(6z)/15
Có xyz=810 => ((6z)/15 x (3z)/5 x z)=810 => (6/25)z^3 -810=0 ( Bấm máy tính pt lập phương này ra)
=> z=15, y=9, z=6
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y+z}{2-3+4}=\dfrac{8}{3}\)
Do đó: x=16/3; y=8; z=32/3
c: Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
=>x=2k; y=3k; z=4k
Ta có: xyz=3
\(\Leftrightarrow2k\cdot3k\cdot4k=3\)
\(\Leftrightarrow24k^3=8\)
=>k=1/2
=>x=1; y=3/2; z=2
5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)
TT=>VT2>=VP2
6.\(1+\sqrt{y-1}\ge1\)
\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)
=>VT1>=VP1
10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)
x/2=y/3=z/6 và xyz=36
suy ra x3/6=y2/6=z/6
suy ra x<y<z , để x3/6=y2/6=z/6 suy ra x=2,y=3, z=6
thử lại: xyz=2*3*6=36
Vì \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{6}\)và xyz=36 nên
Đặt \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{6}\)=k
=> x=2k; y=3k;z=6k mà xyz= 36
hay 2k.3k.6k=36
36.k3=36
k3=36:36
k3=13
k=1
Do đó: x= 1.2=2; y=1.3=3; z=1.6=6
KO HIỂU J THÌ CỨ HỎI MIK NHA~_~