Cho hình thang ABCD ( AB // CD), 2 đường chéo cắt nhau tại O. Qua O kẻ đường thẳng // với AB cắt các cạnh AD, BC theo thứ tự M và N.
Chứng minh O là trung điểm MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECF có
O là trung điểm chung của AC và EF
nên AECF là hình bình hành
b: Xét tứ giác AKCH có
AK//CH
AH//CK
Do đó: AKCH là hình bình hành
Suy ra: AH=CK
Bạn tự vé hình nhé!
Xét \(\Delta\)ABD có: OM//AB (gt) => \(\frac{OM}{AB}=\frac{DO}{DB}\left(1\right)\)
Xét \(\Delta\)ABC có: ON //AB (gt) => \(\frac{ON}{AB}=\frac{CO}{CA}\left(2\right)\)
Mặt khác: AB//CD (gt) =>\(\frac{DO}{DB}=\frac{CO}{CA}\left(3\right)\)
(1)(2)(3) => \(\frac{OM}{AB}=\frac{ON}{AB}\)=> OM=ON (đpcm)
Nguồn: loigiaihay.com
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
mà AE=AF
nên AEMF là hình thoi
Ta có: AB/DC ( tứ giác ABCD là HBH) => góc ABO = góc CDO ( 2 góc slt)
Ta có: BC//AD ( tứ giác ABCD là HBH) => góc CBO = góc ADO ( 2 góc slt)
Ta có: tứ giác ABCD là HBH => giao điểm O là trung điểm của AC và BD
Xét tam giác AEO và tam giác CFO có:
Góc BAO = góc DCO ( cmt)
OA = OC ( O trung điểm của AC )
góc EOA = góc FOC ( đối đỉnh)
=> tam giác AEO = giác CFO ( c.g.c)
=> EO = FO ( 2 cạnh tương ứng) => O là trung điểm của EF
Xét tam giác BHO = tam giác DGO có:
góc CBO = góc ADO (cmt)
OD = OB ( O là trung điểm của DB )
Góc GOD = góc HOB ( đối đỉnh)
=> tam giác BHO = DGO ( g.c.g)
=> HO = GO ( 2 cạnh tương ứng) => O là trung điểm của GH
Xét tứ giác EGFH
ta có: GH cắt EF tại O
Mà O là trung điểm của EF (cmt)
O là trung điểm của GH (cmt)
=> Tứ giác EGFH là hình bình hành.
Tự vẽ hình nha
Xét tg AOM và tg CON có :
góc DAC = góc BCA (SLT)
OA=OC
góc AMN = góc MNC (SLT)
Do đó tg AOM = tg CON (g.c.g)
=> OM=ON
=> O là trung điểm MN