chứng minh rằng nếu các số a , b , c , dthỏa mãn đẳng thức (ad + bc)^2 = 4abcd thì chúng lập thành một tỉ lệ thức
giúp mik nhé , ARIGATOU ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(ad+bc)2=4abcd
<=>(ad+bc)(ad+bc)-4abcd=0
<=>ad(ad+bc)+bc(ad+bc)-4abcd=0
<=>(ad2)+abcd+abcd+(bc)2-4abcd=0
<=>(ad)2+(bc)2+2abcd-(2abcd+2abcd)=0
<=>(ad)2+(bc)2+2abcd-2abcd-2abcd=0
<=>(ad)2+(bc)2-2abcd=0
<=>(ad-bc)2=0
<=>ad=bc
<=>a/b=c/d
vậy từ đẳng thức trên ta có a,b,c,d lập thành 1 TLT(đpcm)
\(\Leftrightarrow\left(ad+bc\right)^2=4abcd\Leftrightarrow a^2d^2+b^2c^2+2abcd-4abcd=0\)\(\Leftrightarrow a^2d^2-2abcd+b^2d^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(với b và d khác 0)
Ta luôn dùng dấu tương đương nên không cần chứng minh ngược lại.
[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0
⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.
Ta có: \(\left(ad+bc\right)^2=4abcd\)
\(\Leftrightarrow a^2d^2+2abcd+b^2c^2-4abcd=0\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\)
\(\Leftrightarrow ad-bc=0\)
\(\Leftrightarrow ad=bc\)
hay \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
[ab(ab - 2cd) + c2d2].[ab(ab - 2) + 2(ab + 1)] = 0
=> ab(ab - 2cd) + c2d2 = 0 hoặc ab(ab - 2) + 2(ab + 1) = 0
+) ab(ab - 2cd) + c2d2 = 0 => (ab)2 - 2(ab).(cd) + (cd)2 = 0 => (ab)2 - (ab).(cd) - (ab).(cd) + (cd)2 = 0
=> (ab - cd).(ab - cd) = 0 => (ab - cd)2 = 0 => ab - cd = 0 => ab = cd => \(\frac{a}{c}=\frac{d}{b}\) => a; b; c;d lập được thành 1 tỉ lệ thức
+) ab(ab - 2) + 2(ab + 1) = 0 => (ab)2 + 2 = 0 (Vô lí, vì (ab)2 + 2 > 0 với mọi a; b)
Vậy..................
(ad+bc)^2 = 4abcd
<=> a^2d^2+2abcd+b^2c^2 = 4abcd
<=> a^2d^2+2abcd+b^2c^2-4abcd=0
<=> a^2d^2-2abcd+b^2c^2 = 0
<=> (ad-bc)^2 = 0
<=> ad-bc = 0
<=> ad=bc
<=> a/b=c/d
=> ĐPCM
k mk nha