Tính :
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\) \(....\) \(+\frac{n-1}{n!}\)
giúp mình nha các bạn !
AIi làm đúng nhanh nhất mình sẽ tick cho 3 ticks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1\frac{4}{5}+2\frac{5}{7}+3\frac{4}{5}+4\frac{5}{7}\)
\(=\left(1\frac{4}{5}+3\frac{4}{5}\right)+\left(2\frac{5}{7}+4\frac{5}{7}\right)\)
\(=\left(\frac{9}{5}+\frac{19}{5}\right)+\left(\frac{19}{7}+\frac{33}{7}\right)\)
\(=\frac{28}{5}+\frac{52}{7}=13\frac{1}{35}\)
= ( \(1\frac{4}{5}\)+ \(3\frac{4}{5}\)) + ( \(2\frac{5}{7}\)+ \(4\frac{5}{7}\))
= \(4\frac{4}{5}\) + \(6\frac{5}{7}\)
= \(\frac{24}{5}\) + \(\frac{47}{7}\)
= ...... ( tính nốt nhé )
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
\(C=\frac{2}{4.7}-\frac{3}{5.9}+\frac{2}{7.10}-\frac{3}{9.13}+...+\frac{2}{301.304}-\frac{3}{401.405}\)
\(C=\left(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{301.304}\right)-\left(\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{401.405}\right)\)
\(C=\frac{2}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{301.304}\right)-\frac{3}{4}\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{401.405}\right)\)
\(C=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{301}-\frac{1}{304}\right)-\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+..+\frac{1}{401}-\frac{1}{405}\right)\) \(C=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{304}\right)-\frac{3}{4}\left(\frac{1}{5}-\frac{1}{405}\right)\)
\(C=\frac{25}{152}-\frac{4}{27}\)
\(C=\frac{67}{4104}\)
B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
Ta có :
\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=\left(\frac{2}{2!}+\frac{3}{3!}+\frac{4}{4!}+...+\frac{n}{n!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)
\(=\left(1+\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{\left(n-1\right)!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{n!}\right)\)
\(=1+\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{\left(n-1\right)!}-\frac{1}{2!}-\frac{1}{3!}-\frac{1}{4!}-....-\frac{1}{n!}\)
\(=1-\frac{1}{n!}=\frac{n!-1}{n!}\)