K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

a) 

(x+1)(y-2) = 3

=> x+1 và y-2 là các ước của 3

Ư(3) = {1; -1; 3; -3}

Lập bảng giá trị:

x+113-1-3
y-231-3-1
x02-2-4
y53-11

Vậy các cặp (x,y) cần tìm là:

(0; 5); (2; 3); (-2; -1); (-4; 1).

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

a.

$xy=-21=7.(-3)=(-7).3=3.(-7)=(-3).7=21.(-1)=(-21).1=(-1).21=1(-21)$

Do đó $(x,y)=(7,-3); (-7,3); (3,-7); (-3,7); (21,-1); (-21,1); (-1,21); (1,-21)$

b.

$(x+5)(y-3)=14=1.14=14.1=(-14)(-1)=(-1)(-14)=2.7=7.2=(-2)(-7)=(-7)(-2)$

Do đó:

$(x+5,y-3)=(1,14); (14,1); (-14,-1); (-1,-14); (2,7); (7,2); (-2,-7); (-7,-2)$

Đến đây thì đơn giản rồi.

c.

$x(y-2)=-19$, bạn làm tương tự

d. Tương tự

 

Bài 1:a) Ta có: \(1-3x⋮x-2\)

\(\Leftrightarrow-3x+1⋮x-2\)

\(\Leftrightarrow-3x+6-5⋮x-2\)

mà \(-3x+6⋮x-2\)

nên \(-5⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(-5\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{3;1;7;-3\right\}\)

Vậy: \(x\in\left\{3;1;7;-3\right\}\)

b) Ta có: \(3x+2⋮2x+1\)

\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)

\(\Leftrightarrow6x+4⋮2x+1\)

\(\Leftrightarrow6x+3+1⋮2x+1\)

mà \(6x+3⋮2x+1\)

nên \(1⋮2x+1\)

\(\Leftrightarrow2x+1\inƯ\left(1\right)\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

Vậy: \(x\in\left\{0;-1\right\}\)

8 tháng 2 2021

Bài 1 :

a, Có : \(1-3x⋮x-2\)

\(\Rightarrow-3x+6-5⋮x-2\)

\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)

- Thấy -3 ( x - 2 ) chia hết cho  x - 2

\(\Rightarrow-5⋮x-2\)

- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy ...

b, Có : \(3x+2⋮2x+1\)

\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)

\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)

- Thấy 1,5 ( 2x +1 ) chia hết cho  2x+1

\(\Rightarrow1⋮2x+1\)

- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x\in\left\{0;-1\right\}\)

Vậy ...

1 tháng 7 2021
Nãy mình gửi nhầm bài trên. Câu trả lời bằng hình

Bài tập Tất cả

1 tháng 7 2021

\(a)\)

\(\left(x+3\right)\left(y+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)

Ta có bảng sau:

\(x+3\)\(1\)\(-1\)\(3\)\(-3\)
\(y+1\)\(3\)\(-3\)\(1\)\(-1\)
\(x\)\(-2\)\(-4\)\(0\)\(-6\)
\(y\)\(2\)\(-4\)\(0\)\(-2\)

Vậy ...

\(b)\)

\(\left(x-1\right)\left(xy+1\right)=2=1.2=\left(-1\right).\left(-2\right)\)

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)
\(xy+1\)\(2\)\(-1\)\(1\)\(-1\)
\(x\)\(2\)\(0\)\(3\)\(-1\)
\(y\)\(\frac{1}{2}\)Loại\(0\)\(2\)

Vậy ...

\(c)\)

\(xy-2=5\)

\(\Leftrightarrow x\left(y-2\right)=5=1.5=\left(-1\right).\left(-5\right)\)

Ta có bảng sau:

\(x\)\(1\)\(-1\)\(5\)\(-5\)
\(y-2\)\(5\)\(-5\)\(1\)\(-1\)
\(y\)\(7\)\(-3\)\(3\)\(1\)

Vậy ...

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1

15 tháng 4 2020

1) x,y nguyên => x-3; 2y+1 nguyên

=> x-3; 2y+1 \(\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)

ta có bảng

x-3-13-1113
x-102416
2y+1-1-13131
y-1-760

2) làm tương tự

3) xy-x-y=0

<=> x(y-1)-(y-1)=0+1

<=> (y-1)(x-1)=1

x,y nguyên => y-1; x-1 nguyên

=> y-1; x-1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)

TH1: \(\hept{\begin{cases}y-1=-1\\x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=0\end{cases}}}\)

TH2: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)

4) xy+3x-7y=21

<=> x(y+3)-7(y+3)=0

<=> (y+3)(x-7)=0

\(\Leftrightarrow\orbr{\begin{cases}y+3=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\x=7\end{cases}}}\)

15 tháng 4 2020

1) Do: (x-3)(2y+1)=13 nên 13 chia hết cho (x-3)

=> (x-3);(2y+1) thuộc ước của 13

Ta có bảng gt sau:

x-3                1                    -1                        13                       -13

2y+1             13                  -13                       1                         -1

x                    4                    2                         16                       -10

y                    6                    -7                         0                        -1

NX              chọn             chọn                     chọn                    chọn

Vậy...

Câu 2) tương tự, bn tự làm nha.

3) xy-x-y=0

=>(xy-x)-(y-1)=1

=>x(y-1)-1(y-1)=1

=>(x-1)(y-1)=1

4)xy+3x-7y=21

=>x(y+3)-7(y+3)=0

=>(x-7)(y+3)=0

3,4 bạn làm tiếp nha mình lười gõ 

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)