K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

5(x² + xy + y²) = 7(x + 2y) 
<=> 5[ x^2/4 + xy + y^2 + 3x^2/4] = 7.(x+2y) 
<=> 5[ (x/2 +y)^2 + 3x^2/4 ] = 7.(x+2y) 
<=> 5.[(x+2y)^2 +3x^2 ] = 28(x+2y) 
đặt a = x+2y ta có: 
5[ a^2 +3x^2 ] = 28a 
<=> 15x^2 = 28a - 5a^2 
nhận thấy Vế trái >= 0 => Vế Phải >=0 => 28a - 5a^2 >=0 => a(5a-28) <=0 => 0 <= a<= 28/5 
=> 0<= a<=5 
5[ a^2 +3x^2 ] = 28a : dễ thấy 28a chia hết cho 5 mà do(28;5) = 1 => a chia hết cho 5 
=> a = 5 hoặc a = 0 
nếu a = 0 ; x+ 2y = 0 thì 5[ a^2 +3x^2 ] = 28a <=> 3x^2 = 0 <=> x = 0 => y = 0 
nếu a = 5 ; x+2y = 5 rhì 5(25 + 3x^2) = 5 <=> 3x^2 +24 = 0 vô lý vì 3x^2 + 24 >0 
vậy pt có nghiệm nguên duy nhất x = y = 0

19 tháng 3 2020

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)

\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)

   \(=196-3\left(5y-7\right)^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)

Mặt khác \(5y-7\equiv3\left(mod5\right)\)

\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)

mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)

Từ đó tính ra

\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)

\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)

\(=-75y^2+210y+49\)

\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)

\(=196-3\left(5y-7\right)^2\ge0\)

Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)

Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)

Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)

Đến đây ta xét trường hợp là ra.

NV
28 tháng 3 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

28 tháng 3 2021

Mk sửa lại đề rồi. Bạn giúp mk giải vs

17 tháng 1 2019

Ta có: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

Do \(\Delta\ge0\Rightarrow\left(5y-7\right)^2-20\left(5y^2-14y\right)\)

\(=-75y^2+210y+49\ge0\)

\(\Rightarrow-75\left(y-\dfrac{21+14\sqrt{3}}{15}\right)\left(y-\dfrac{21-14\sqrt{3}}{15}\right)\ge0\)

\(\Leftrightarrow\dfrac{21-14\sqrt{3}}{15}\le y\le\dfrac{21+14\sqrt{3}}{15}\)

\(y\in Z\Rightarrow0\le y\le3\)

tới đây xét 3 trường hợp rồi làm tiếp

AH
Akai Haruma
Giáo viên
29 tháng 7 2017

Lời giải:

Ta thấy \(x^2+xy+y^2=(x+\frac{y}{2})^2+\frac{3}{4}y^2\geq 0\) với mọi \(x,y\in\mathbb{Z}\)

\(\Rightarrow x+2y\geq 0\)

Có: \(5(x^2+xy+y^2)=7(x+2y)\Leftrightarrow 5(4x^2+4xy+4y^2)=28(x+2y)\)

\(\Leftrightarrow 5[(x+2y)^2+3x^2]=28(x+2y)\)

Nếu \(x\geq 2\) hoặc \(x\leq -2\) thì \(x^2\geq 4\)

Áp dụng BĐT Am-Gm kết hợp \(x+2y\geq 0\)

\((x+2y)^2+3x^2\geq 2\sqrt{(x+2y)^23x^2}=2(x+2y)\sqrt{3x^2}\)

\(x^2\geq 4\Rightarrow (x+2y)^2+3x^2\geq 2(x+2y)^2\sqrt{12}>6(x+2y)\)

\(\Leftrightarrow 5[(x+2y)^2+3x^2]>30(x+2y)>28(x+2y)\) (vô lý)

Do đó \(-2< x<2\Rightarrow x\in \left\{-1;0;1\right\}\)

Thử lần lượt các giá trị trên vào PT ban đầu thu được các bộ nghiệm thỏa mãn là \((x,y)=\left\{(-1,3),(0,0),(1,2)\right\}\)

1 tháng 8 2015

=> 5x2 + 5xy + 5y2 = 7x + 14y

=> 5x2 + 5xy - 7x + 5y- 14y = 0 

=> 5x+ (5y -7).x + (5y - 14y) = 0   (*)

Tính \(\Delta\) = (5y - 7)- 4.5.(5y - 14y) = -75y2 + 210y + 49  

Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49  = k( với k nguyên)

=> - 3. (25y- 2.5y.7 + 49) + 196 = k2

=> -3.(5y - 7)+ 196 = k2

=> 3.(5y - 7)+ k= 196 => 3. (5y-7)2  \(\le\) 196 => (5y - 7)2  \(\le\) 66 =>-8  \(\le\)  5y - 7 \(\le\) 8

=> -1/5  \(\le\) y \(\le\) 3

y nguyên nên y có thể bằng 0; 1;2;3

Với tưng giá trị của y ta thay vào (*) => x 

Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu

NV
27 tháng 9 2019

\(\Leftrightarrow5x^2+\left(5y-7\right)x+5y^2-14y=0\) (1)

\(\Delta=\left(5y-7\right)^2-20\left(5y^2-14y\right)\ge0\)

\(\Rightarrow\frac{35-7\sqrt{33}}{24}\le y\le\frac{35+7\sqrt{33}}{24}\)

Do y nguyên \(\Rightarrow y=\left\{0;1;2;3\right\}\)

Thế vào (1) tìm x nguyên