K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

a. A=4x-x2+3= 7-(x2-4x+4)=7-(x-2)2

Nhận thấy -(x-2)2\(\le0\forall x\)

=> 7-(x-2)2\(\le7\forall x\)

Dấu "=" xảy ra khi x-2=0=>x=2

Vậy max A=7 <=>x=2

b. B= -x2+6x-11= -2-(x2-6x+9)=-2-(x-3)2

Nhận thấy -(x-3)2\(\le0\forall x\)

=> -2-(x-3)\(\le-2\forall x\)

Dấu "=" xảy ra khi x-3=0 => x=3

Vậy max B=-2 <=> x=3

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

19 tháng 12 2016

a) = \(x^2-6x+11\)

\(x^2-2.3x+3^2+2\)

\(\left(x-3\right)^2+2\ge2\left(do\left(x-3\right)^2\ge0\right)\)

Vậy min = 2 khi x-3=0<=> x=3

b) = \(-\left(x^2-6x+11\right)\)

\(-\left(x^2-2.x.3+3^2\right)-2\)

\(-2-\left(x-3\right)^2\le-2\left(do\left(x-3\right)^2\ge0\right)\)

Vậy max=-2 khi x-3 =0 <=> x=3

Chắc chắn đúng. mik nhé! Tks banj~~~ (:

19 tháng 12 2016

Dạng bài này phải là dễ, à k phải nói là quá dễ. Do tối rồi nên mình chỉ có thể giải giúp bạn bài tập thôi, còn muốn mình giảng thì nhắn tin riêng cho mình nhé!  :")

A = x^2  -  6x  +  11  =  (x^2  -  6x  +  9 ) + 2 = (x-3)^2  +  2

Vì (x-3)^2  >/= 0 với mọi x nên A=(x-3)^2 +2 >/= 2

Suy ra GTNN của A bằng 2 khi : x - 3 =0 hay x=3

10 tháng 4 2019

a a= -4x^2-4x+3

để a lơn nhất thì 

\(-4x^2-4x\ge0\\ \Leftrightarrow4x^2+4x\le0\\ \Leftrightarrow x^2+x\le0\\ \Leftrightarrow x\left(x+1\right)\le0\)

a lớn nhất thì x(x+1)=0 khi đó \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)thì a đạt giá trị lớn nhất là 3

10 tháng 4 2019

B=\(\frac{1}{x^2}-6x+11\)đúng ko ?

10 tháng 11 2016

Bài 2:

\(A=-2x^2+3x-5\)

\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)

\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)

\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)

Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)

10 tháng 11 2016

Bài 1:

a)x2-4x2y+4xy

=x(x-4xy+y)

b)đề sai

8 tháng 10 2020

a) \(A=-4x^2-8x+3=-4\left(x^2+2x+1\right)+7=-4\left(x+1\right)^2+7\le7\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)

Vậy Max(A) = 7 khi x = -1

b) \(B=6x-x^2+2=-\left(x^2-6x+9\right)+11=-\left(x-3\right)^2+11\le11\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy Max(B) = 11 khi x = 3

c) \(C=x\left(2-3x\right)=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{1}{3}=-3\left(x-\frac{1}{3}\right)^2+\frac{1}{3}\le\frac{1}{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{1}{3}\right)^2=0\Rightarrow x=\frac{1}{3}\)

Vậy Max(C) = 1/3 khi x = 1/3

8 tháng 10 2020

d) \(D=3x-x^2+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy Max(D) = 17/4 khi x = 3/2

e) \(E=3-2x^2+2xy-y^2-2x\)

\(E=-\left(x^2-2xy+y^2\right)-\left(x^2+2x+1\right)+4\)

\(E=-\left(x-y\right)^2-\left(x+1\right)^2+4\le4\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\end{cases}}\Rightarrow x=y=-1\)

Vậy Max(E) = 4 khi x = y = -1

8 tháng 10 2020

A = \(4x^2\) - 8x + 3

= [\(\left(2x\right)^2\) - 2.2x.2 + \(2^2\)] \(-2^2\) + 3

= \(\left(2x-2\right)^2\) - 1

Ta có: \(\left(2x-2\right)^2\) ≤ 0 ∀ x

\(\left(2x-2\right)^2\) - 1 ≤ - 1

Hay A ≤ - 1

Dấu "=" xảy ra ↔ 2x - 2 = 0

2x = 2

x = 1

Vậy GTLN của A = - 1 ↔ x = 1

B = 6x \(-x^2\) + 2

= - (\(x^2\) - 6x) + 2

= - (\(x^2\) - 2.x.3 + \(3^2\)) \(-3^2\) + 2

= - \(\left(x-3\right)^2\) -7

Ta có: \(-\left(x-3\right)^2\) ≤ 0 ∀ x

\(-\left(x-3\right)^2\) - 7 ≤ - 7

Hay B ≤ - 7

Dấu "=" xảy ra ↔ - (x - 3) = 0

- x + 3 = 0

- x= - 3

x = 3

Vậy GTLN của B = - 7 ↔ x = 3

C = x(2 - 3x)

= 2x \(-3x^2\)

= - 3(\(x^2\) - \(\frac{3}{2}x\) )

= - 3(\(x^2\) - 2.x.\(\frac{3}{4}\) + \(\frac{3}{4}^2\)) \(-\frac{3}{4}^2\)

Ta có: \(-3\left(x+\frac{3}{4}\right)^2\) ≤ 0 ∀ x

\(-3\left(x+\frac{3}{4}\right)^2\) \(-\frac{9}{16}\)\(-\frac{9}{16}\)

Hay C ≤ \(-\frac{9}{16}\)

Dấu "=" xảy ra ↔ \(-3\left(x+\frac{3}{4}\right)\) = 0

- 3x \(-\frac{9}{4}\) = 0

- 3x = \(\frac{9}{4}\)

x = \(-\frac{3}{4}\)

Vậy GTLN của C = \(-\frac{9}{16}\) ↔ x = \(-\frac{3}{4}\)