K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Số 20042015 không là số chính phương vì : 20042015 = 20042.1007+1

2 tháng 2 2021

Ta có A=2004^2015=(...0) (nhớ có gạch ngang trên đầu nhé)

mà số chính phương có tận cùng là các số 0 1 4 5 6 9

=>A=2004^2015 là số chính phương

26 tháng 10 2019

\(A=2004^{2015}=2004^{2014+1}=2004^{2014}.2004=\left(2004^{1007}\right)^2.2004\)

Vì 2004 không phải là số chính phương, \(\left(2004^{1007}\right)^2\)là số chính phương

=> A không phải là số chính phương.

4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
4 tháng 1 2020

Ta có: Đặt a = 2013

Khi đó, ta có: A = a(a + 2)(a + 4)(a + 6) + 16

A = [a(a + 6)][(a + 2)(a + 4)] + 16

A = (a2 + 6a)(a2 + 6a + 8) + 16

A = (a2 + 6a) + 8(a2 + 6a) + 16

A = (a2 + 6a + 4)2

=> A là số chính phương

=> bình phương của 20132 + 6.2013 + 4 = 4064251

(biến đổi trực tiếp luôn cũng được, không cần phải đặt)

14 tháng 11 2018

Ta tính được A=\(\frac{3^{2005}-3}{2}\)=\(\frac{3\cdot\left(3^{2004}-1\right)}{2}\)

Nhận thấy A chia hết cho 3. 

Một số chính phương chia hết cho 3 phải chia hết cho 9

mà \(3^{2004}-1\)không chia hết cho 3 nên 

\(3\cdot\left(3^{2004}-1\right)\)không chia hết cho 9 hay A không chia hết cho 9

Vậy A không phải là số chính phương

Chúc bạn học tốt!

25 tháng 2 2020

Có thể làm như sau

3chia hết cho 9

3chia hết cho 9

3chia hết cho 9

...

32004 chia hết cho 9

mà 3 không chia hết cho 9

nên A = 3+ 3^2+3^3+3^4+...+3^2004 không chia hết cho 9

vậy A không là số chính phương

6 tháng 9 2015

Tổng có 2004 số hạng, nhóm các số hạng từ trái sang phải, mỗi nhóm 4 số hạng được 501 nhóm. Trong mỗi nhóm chữ số tận cùng của tổng là 0 nên A có tận cùng là 0. Vậy A là số chính phương.

6 tháng 9 2015

top scorer sai rồi  

30 tháng 3 2018

giả sử A là số chính phương

Ta có: \(A=3+3^2+3^3+...+3^{2004}\)

               \(=3.\left(1+3+3^2+....+3^{2003}\right)\)

=> A chia hết cho 3

=> A chia hết cho 32 (vì A là số chính phương)

=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)

=> A không phải là số chính phương

P/s: Không biết đúng không, làm đại

30 tháng 3 2018

Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)

         => A\(⋮\)3 (1)

ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)

        => A không chia hết cho 3^2 (2)

từ (1) , (2) => A không là số chính phương

5 tháng 2 2016

Giả sử A là số chính phương

A = 3 + 32 + 33 +...+ 32004

A = 3(1 + 3 + 32 +...+ 32004)

=> A chia hết cho 3

=> A chia hết cho 32 (Vì A là số chính phương)

=> 1 + 3 + 32 +...+ 32004 chia hết cho 3 (Điều này rõ ràng vô lí)

Vậy A không là số chính phương

5 tháng 2 2016

ko 

ủng hộ mk nha các bạn

8 tháng 1 2019

giả sử A là so chính phương

A=3+3 2+3 3+...+3 2004

A=3(1+3+3 2+...+3 2003)

⇒A⋮32(vì A là số chính phương)

⇒ ⋮1+3+3 2+...+3 2004 ⋮3(vô lí)

Vậy a ko là số chính phương