C/m\(\frac{12+x^2}{9}\)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x\ne y\end{matrix}\right.\)
Gọi biểu thức trên là A , ta có:
\(A=\frac{2\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}+\frac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}-\frac{3\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\\ =\frac{2\sqrt{x}-2\sqrt{y}+\sqrt{x}+\sqrt{y}-3\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\\ =\frac{-\sqrt{y}}{x-y}\left(=\frac{\sqrt{y}}{y-x}\right)\)
b) Với x=4 ; y=9 ta có:
\(A=\frac{\sqrt{9}}{9-4}=\frac{3}{5}\)
c) Ta có: với x>y>0 thì A<=>\(\left\{{}\begin{matrix}\sqrt{y}>0\\x>y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}>0\\y-x< 0\end{matrix}\right.\Leftrightarrow A< 0\)
Vậy A<0 với mọi x>y>0
\(T=\sum\frac{a}{1+9b^2}=\sum\frac{a\left(1+9b^2\right)-9ab^2}{1+9b^2}=\sum\left(a-\frac{9ab^2}{1+9b^2}\right)\ge\sum\left(a-\frac{9ab^2}{6b}\right)=\sum\left(a-\frac{3}{2}ab\right)\)
\(T\ge a+b+c-\frac{3}{2}\left(ab+ac+bc\right)\ge a+b+c-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)
\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)
1) Tìm x:
a) \(\frac{11}{12}-\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{5}+x=\frac{1}{4}:\frac{5}{12}=\frac{3}{5}\)
\(\Leftrightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
\(\Leftrightarrow x=-\frac{7}{20}:\frac{1}{4}=\frac{-7}{5}\)
a) \(\frac{11}{12}-\frac{5}{12}\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{5}{12}.\frac{2}{5}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{1}{6}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{-5}{12}x=\frac{2}{3}-\frac{11}{12}+\frac{1}{6}\)
\(\Leftrightarrow-\frac{5}{12}x=\frac{8}{12}-\frac{11}{12}+\frac{2}{12}=-\frac{1}{12}\)
\(\Leftrightarrow x=\frac{-1}{12}:\left(-\frac{5}{12}\right)=-\frac{1}{12}.\left(-\frac{12}{5}\right)=\frac{1}{5}\)
Vậy x = 1/5
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=\frac{8}{20}-\frac{15}{20}=-\frac{7}{20}\)
\(\Leftrightarrow x=\frac{1}{4}:\left(-\frac{7}{20}\right)=\frac{1}{4}.\left(-\frac{20}{7}\right)=-\frac{5}{7}\)
Vậy x = -5/7
c) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)
d) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\end{matrix}\right.\)
Ta thấy x <-1 và x >2 vô lí
Do đó: x >-1 và x <2
Vậy -1 < x <2
e) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy x > 2 hoặc x < -2/3
Bài 1:
a) \(Q=\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}\)
\(=\frac{2+2\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}=\frac{2(1+\sqrt{x})}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}-1}\)
b) Khi $x=9$ thì: \(Q=\frac{2}{\sqrt{9}-1}=\frac{2}{3-1}=1\)
Bài 2:
a)
\(M=\frac{\sqrt{a}(\sqrt{a}+\sqrt{b})}{\sqrt{b}(\sqrt{b}+\sqrt{a})}+\frac{\sqrt{b}}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{a}}=\frac{a+b}{\sqrt{ab}}\)
b) Khi $a=3; b=12$ thì: \(M=\frac{3+12}{\sqrt{3.12}}=\frac{15}{\sqrt{36}}=\frac{15}{6}=\frac{5}{2}\)
a/ \(\Leftrightarrow m^2x-m^2-x-m+2=0\)
\(\Leftrightarrow\left(m^2-1\right)x=m^2+m-2\)
Xét khi \(m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0x=1+1-2=0\\0x=1-1-2=-2\left(l\right)\end{matrix}\right.\)
Vậy vs m= 1 pt vô số nghiệm (x>0)
Xét khi \(m^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow x=\frac{m^2+m-2}{m^2-1}\)
Có \(x>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)>0\\\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)< 0\\\left(m-1\right)\left(m+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
b/ \(\Leftrightarrow mx-m-x+1+m-2=0\)
\(\Leftrightarrow\left(m-1\right)x=1\)
Vs \(m\ne1\)
\(\Rightarrow x=\frac{1}{m-1}\)
Có \(x\ge3\Rightarrow\frac{1}{m-1}\ge3\Leftrightarrow1\ge3m-3\Leftrightarrow m\le\frac{4}{3}\)
Xét \(m=1\Rightarrow0x=1\left(l\right)\)
Vậy vs \(m\le\frac{4}{3}\) thì pt có nghiệm vs x\(\ge3\)
c/ ĐKXĐ: \(9-x^2>0\Leftrightarrow\left(3-x\right)\left(3+x\right)>0\Leftrightarrow-3< x< 3\)
hmm, xem lại hộ cái đề boài nhoa, vế phải trên tử có dấu bằng là sao nhể? =))
c) \(\left|2x-3\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)
\(TH:2x-3=4\)
\(\Leftrightarrow2x=4+3\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\frac{7}{2}\)
\(TH:2x-3=-4\)
\(\Leftrightarrow2x=-4+3\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{7}{2};\frac{-1}{2}\right\}\)
e) \(\frac{x-1}{x-3}>1\)
\(ĐKXĐ:x\ne3\)
\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)
\(\Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\)
\(\Leftrightarrow1+\frac{2}{x-3}>1\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Bài 2:
a: =>x+32=0
=>x=-32
b: =>x-1=0
=>x=1
c: =>45-x=0 hoặc x=0
=>x=0 hoặc x=45
d: =>x-12=0 hoặc x+27=0
=>x=12 hoặc x=-27
\(\frac{x-2}{4}=\frac{-9}{2-x}\)
\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=36\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)
\(\frac{x}{15}=\frac{3}{y}\)
\(\Rightarrow xy=45\)
\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)
Xét bảng
x | 1(loại) | -1 | 3(loại) | -3 | 5(loại) | -5 | 45 | -45(loại) | 15 | -15(loại) | 9 | -9(loại) |
y | 45(loại) | -45 | 15(loại) | -15 | 9(loại) | -9 | 1 | -1(loại) | 3 | -3(loại) | 5 | -5(loại) |
Vậy.......................................
d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
\(\Rightarrow x=4.2=8\)
\(y=3.2=6\)