Tìm \(x\) biết \(x\)X \(x\)\(-\)\(\frac{1}{16}\)\(=\frac{5}{18}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x-18}{x+4}=\frac{x-17}{x+16}=k\)
Suy ra: \(x-18=k\left(x+4\right)\Rightarrow x=\frac{4k+18}{1-k}\left(1\right)\\ x-17=k\left(x+16\right)\Rightarrow x=\frac{16k+17}{1-k}\left(2\right)\)
Từ (1) và (2) ta được: \(4k+18=16k+17,\) suy ra \(k=\frac{1}{12},x=20\)
Hôm nay cô giao bài nhìu, tui đăng nhìu, vất vả nhìu cho chú đấy
\(\frac{x+15}{2000}+\frac{x+16}{1999}=\frac{x+17}{1998}+\frac{x+18}{1997}\)
\(\Leftrightarrow\frac{x+15}{2000}+1+\frac{x+16}{1999}+1=\frac{x+17}{1998}+1+\frac{x+18}{1997}+1\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}=\frac{x+2015}{1998}+\frac{x+2015}{1997}\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}-\frac{x+2015}{1998}-\frac{x+2015}{1997}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\right)=0\)
Có: \(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\ne0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
\(a,\frac{x}{3}=\frac{y}{5}\)
=> (x+y)/(3+5) = x/3 = y/5
=> 32/8 = x/3 = y/5
=> 4 = x/3 = y/5
=> x = 12 ; y = 20
b, x/2 = y/5
=> x + y/2 + 5 = x/2 = y/5
=> 21/7 = x/2 = y/5
=> 3 = x/2 = y/5
=> x = 6 và y = 15
c.7x=3y và x-y=16
đặt x/3=y/7
=>x/3=y/7=x-y/3-7=16/-4=-4(vì x-y=16)
=>x/3=-4=-12
=>y/7=-4=-28
vậy .....
Ta có: \(\frac{x+y}{16}=\frac{x-y}{18}\)
=> 18(x + y) = 16(x - y)
=> 18x + 18y = 16x - 16y
=> 18x - 16x = -16y - 18y
=> 2x = -34y
=> x = -17y
Khi đó: \(\frac{-17y+y}{16}=\frac{-17y.y}{17}\)
=> \(\frac{-16y}{16}=-y^2\)
=> \(-y+y^2=0\)
=> y(y - 1) = 0
=> \(\orbr{\begin{cases}y=0\\y-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Với y = 0 => x = -17.0 = 0
y= 1 => x = -17 . 1 = -17
Vậy ....
\(\frac{x+18}{2018}+\frac{x+17}{2017}+\frac{x+16}{2016}=3\)
\(\Rightarrow\frac{x+18}{2018}-1+\frac{x+17}{2017}-1+\frac{x+16}{2016}-1=3-3\)
\(\Rightarrow\frac{x+18-2018}{2018}+\frac{x+17-2017}{2017}+\frac{x+16-2016}{2016}=0\)
\(\Rightarrow\frac{x-2000}{2018}+\frac{x-2000}{2017}+\frac{x-2000}{2016}=0\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\ne0\)
=> x - 2000 = 0
=> x = 2000
Ta có :
\(\frac{x+18}{2018}+\frac{x+17}{2017}+\frac{x+16}{2016}=3\)
\(\Leftrightarrow\)\(\left(\frac{x+18}{2018}-1\right)+\left(\frac{x+17}{2017}-1\right)+\left(\frac{x+16}{2016}-1\right)=3-3\) ( trừ hai vế cho 3 )
\(\Leftrightarrow\)\(\frac{x-2000}{2018}+\frac{x-2000}{2017}+\frac{x-2000}{2016}=0\)
\(\Leftrightarrow\)\(\left(x-2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\ne0\)
Nên \(x-2000=0\)
\(\Rightarrow\)\(x=2000\)
Vậy \(x=2000\)
Chúc bạn học tốt ~
Xét \(\frac{-5}{x}=\frac{-18}{72}\)
\(\Rightarrow\)(-5) . 72 = x . (-18)
\(\Rightarrow\)-360 = x . (-18)
\(\Rightarrow\)x = (-360) : (-18) = 20
Xét \(\frac{y}{16}=\frac{-18}{72}\)
\(\Rightarrow\)72y = 16 . (-18)
\(\Rightarrow\)72y = -288
\(\Rightarrow\)y = (-288) : 72 = -4
Vậy x = 20 ; y = -4
Ta có :
\(\frac{-5}{x}=\frac{-18}{72}\Rightarrow\frac{-5}{x}=\frac{-1}{4}\)
\(\Rightarrow-5.4=x.-1\)
\(\Rightarrow-20=-x\)
\(\Rightarrow x=20\)
Thay x = 20 vào \(\frac{-5}{x}\)ta được :
\(\frac{-5}{20}=\frac{y}{16}\)\(\Rightarrow\frac{-1}{4}=\frac{y}{16}\Rightarrow-1.16=y.4\)
\(\Rightarrow-16=y.4\)
\(\Rightarrow y=-4\)
Vậy x = 20 , y = -4
Tk mk nha !!!
Ta có: 1/2 - (1/3 + 1/4) = 1/2 - 7/12 = -1/12 ;
1/48 - (1/16 - 1/6) = 1/48 + 5/48 = 1/8
Vì \(-\frac{1}{12}< x< \frac{1}{8}\) nên x = 0
Ta có :
\(4\frac{5}{9}:2\frac{5}{18}-7=2-7=-5\)
\(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(-21\frac{2}{3}\right)=\left(1+\frac{38}{5}\right):\left(-21\frac{2}{3}\right)=\frac{43}{5}:\frac{-65}{3}=-\frac{129}{325}\)
Vì \(-5< x< -\frac{129}{325}\) nên \(x\in\left\{-4;-3;-2;-1\right\}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
X=7/12