K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2019

\(x\ge2017\)

\(A=\frac{\sqrt{x-2016}}{x-2016+2017}+\frac{\sqrt{x-2017}}{x-2017+2016}=\frac{1}{\sqrt{x-2016}+\frac{2017}{\sqrt{x-2016}}}+\frac{1}{\sqrt{x-2017}+\frac{2016}{\sqrt{x-2017}}}\)

\(A\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-2016=2017\\x-2017=2016\end{matrix}\right.\) \(\Rightarrow x=4033\)

26 tháng 1 2016

b)\(\sqrt{2^3+1}\) theo mình phần b như vậy ko bít đúng ko

26 tháng 1 2016

a)=**** 100%

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

6 tháng 6 2016

Côsi:

\(x+1=\left(x-2006\right)+2007\ge2\sqrt{2007}.\sqrt{x-2006}\)

\(x-1=\left(x-2007\right)+2006\ge2\sqrt{2006}.\sqrt{x-2007}\)

\(A\le\frac{1}{2\sqrt{2007}}+\frac{1}{2\sqrt{2006}}\)

Dấu bằng: \(\hept{\begin{cases}x-2006=2007\\x-2007=2006\end{cases}\Leftrightarrow x=2006+2007=4013}\)

6 tháng 6 2016

đó là tim max mà

6 tháng 6 2017

đề sai 1 chút nha.

\(M=\dfrac{\sqrt{x-2017}}{\left(x-2017\right)+2019}+\dfrac{\sqrt{x-2018}}{\left(x-2018\right)+2018}\)

\(=\dfrac{1}{\sqrt{x-2017}+\dfrac{2019}{\sqrt{x-2017}}}+\dfrac{1}{\sqrt{x-2018}+\dfrac{2018}{\sqrt{x-2018}}}\)

\(\le\dfrac{1}{2\sqrt{2019}}+\dfrac{1}{2\sqrt{2018}}\)

M Max = \(\dfrac{1}{2\sqrt{2019}}+\dfrac{1}{2\sqrt{2018}}\)khi x =4036.

NV
16 tháng 5 2019

ĐKXĐ: \(x\ge2017\)

- Với \(x=2017\Rightarrow A=\frac{1}{2019}\) (1)

- Với \(x>2017\)

\(A=\frac{\sqrt{x-2016}}{x-2016+2018}+\frac{\sqrt{x-2017}}{x-2017+2017}=\frac{1}{\sqrt{x-2016}+\frac{2018}{\sqrt{x-2016}}}+\frac{1}{\sqrt{x-2017}+\frac{2017}{\sqrt{x-2017}}}\)

\(\Rightarrow A\le\frac{1}{2\sqrt{2018}}+\frac{1}{2\sqrt{2017}}\) (2)

So sánh (1) và (2) ta được \(A_{max}=\frac{1}{2\sqrt{2018}}+\frac{1}{2\sqrt{2017}}\)

Dấu "=" xảy ra khi \(x=4034\)