K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

theo như cách lớp 8 thi => n = 0

Còn nếu bn đang hc lớp 6 thì mik chịu ko bt giải cách lớp 6

11 tháng 4 2018

tớ biết nè

p= 2x2^4n+1

p=2x2^5n

p=2x32n

p=64n

p=64n+1

p=65.n

suy ra 65 là số nguyên tố nên cậu bằng tuổi tớ đó cứ theo cách của tớ nhé

n=1

như vầy đó cách này tớ học ở lớp 

5 tháng 11 2023

a) 4n + 7 chia hết cho 2n + 1

⇒ 4n + 2 + 5 chia hết cho 2n + 1

⇒ 2(2n + 1) + 5 chia hết cho 2n + 1

⇒ 5 chia hết cho 2n + 1

⇒ 2n + 1 ∈ Ư(5) (ước dương)

⇒ 2n + 1 ∈ {1; 5}

⇒ n ∈ {0; 2} 

16 tháng 1 2022

n=0 hoặc n=1.

16 tháng 1 2022

phân tích đa thức thành nhân tử:

(2n2-2n+1)(2n2+2n+1)

Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3

b) Có 4n+5 chia hết cho 2n+1

=>2(n+1)+3 chia hết cho 2n+1

=>2n+1 thuộc Ư(3)={1;3}

Với 2n+1=1    =>n=0

Với 2n+1=3      =>n=1

Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha

16 tháng 3 2020

a, p là số nguyên tố

+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số 

=> p = 2 (loại)

+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P

                      p + 20 = 3 + 20 = 23 thuộc P

=> p = 3 (nhận)

+ p là số nguyên tố và p > 3

=> p = 3k + 1 hoặc  p = 3k + 2

xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số

=> p = 3k + 1 loaị

+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số

=> p = 3k + 2 loại

vậy p  = 3

b, 4n + 5 chia hết cho 2n + 1

=> 4n + 2 + 3 chia hết cho 2n + 1

=> 2(2n + 1) + 3 chia hết cho 2n + 1

=> 3 chia hết cho  2n + 1

xét ư(3) là ok nhé

21 tháng 8 2021

xét n = 2 => 4n + 1 = 2.4 + 1 = 9 (không là số nguyên tố)

=> n = 2 (loại)

xét n = 3 => 2n + 1 = 2.3 + 1 = 7 (thỏa mãn)

                    4n + 1 = 3.4 + 1 = 13 (thỏa mãn)

=> n = 3 (chọn)

xét n là số nguyên tố, n > 3 => n = 3k + 1 hoặc n = 3k + 2

với n = 3k + 1 => 2n + 1 = 2(3k + 1) + 1 = 6k + 2 = 2(k + 1) (là hợp số)

=> n = 3k + 1 (loại)

với n = 3k + 2 => 4n + 1 = 4(3k + 2) + 2 = 12k + 10 = 2(6k + 5) (là hợp số)

=> n = 3k + 2 (loại)

vậy n = 3