K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

TỨ GIÁC ABHK LÀ HCN DẤU HIỆU 1

B)

TAM GIÁC AHD= TAM GIÁC BCK (CH-CGV)VÌ

GÓC H = GÓC K ( CÙNG BẰNG 90 ĐỘ)

AH=AK(ABHK LÀ HCN)

AD=BC(ABCD LÀ HÌNH THANG CÂN)

SUY RA DH=KC ( HAI CẠNH TƯƠNG ỨNG)

a: Xét tứ giác ABKH có 

AB//HK

AB=HK

Do đó: ABKH là hình bình hành

mà \(\widehat{AHK}=90^0\)

nên ABKH là hình chữ nhật

6 tháng 11 2021

mình cần câu b

 

a: Xét tứ giác ABKH có 

AB//HK

AH//BK

Do đó: ABKH là hình bình hành

mà \(\widehat{AHK}=90^0\)

nên ABKH là hình chữ nhật

6 tháng 11 2019

Làm câu b và c thôi nha! Câu a tớ làm r

b)Xét tam giác ADH và tam giác BCK có:

AH=BK,AD=BC,góc AHD=góc BKC=90^0

=>Tam giác ADH=tam giác BCK

=>DH=CK(đpcm)

c)Do E là điểm đối xứng của D qua H nên:

góc AED=góc ADH=góc BCK

=>AE//BC

Kết hợp AB//EC

=>ABCE là hình bình hành

1) Vì AH\(\perp\)DC 

BK\(\perp\)DC 

=> AH//BK 

Mà BAH + AHK = 180° ( trong cùng phía) 

=> BAH = 90° 

Mà ABK + BKH = 180° ( trong cùng phía) 

=> ABK = 90° 

Mà BAH = AHK = 90° 

Mà 2 góc này ở vị trí trong cùng phía 

=> AB//HK 

=> ABKH là hình thang cân 

=> ABKH là hình thang cân 

=> AB = HK , AH = BK

b) Vì ABCD là hình thang cân 

=> AD = BC 

=> ADC = BCD 

Xét ∆ vuông AHD và ∆ vuông BKC ta có : 

AD = BC 

ADC = BCD 

=> ∆AHD = ∆BKC (ch-gn)

Mà DH = KC ( tương ứng) 

c) Ta có : 

DH + HK + KC = DC

Mà HK = AB 

=> DH + AB + KC = DC

DH + KC = DC - AB 

Mà DH = KC 

=> DH = \(\frac{1}{2}\)( CD - AB )

thêm hình cho bài nó hoàn chỉnh :))

A B D C H K

a: Xét tứ giác ABCH có

AB//CH

góc AHC=90 độ

Do đó: ABCH là hình thang vuông

b: Sửa đề; DH=CK

Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

góc D=góc C

Do đo: ΔAHD=ΔBKC

=>DH=CK

c: Xét ΔAED có

AH vừa là đường cao, vừa là trung tuyến

nên ΔAED cân tại A

=>góc AED=góc ADE=góc BCD

=>AE//BC

mà AB//CE

nên ABCE là hình bình hành