Tìm stn n để n+6 chia hết cho 2n-1
Nhanh mk tk cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n+3 chia hết cho n-2
=>n-2+5 chia hết cho n-2
=> 5 chia hết cho n-2
U(5)=1;5
=>n=3;7
Ta có: n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}
a) \(2n+7⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+6⋮2n+1\)
\(\Rightarrow6⋮2n+1\)(vì \(2n+1⋮2n+1\))
\(\Rightarrow2n+1\inƯ\left(6\right)\)
\(\Rightarrow2n+1\in\left\{1;2;3;6\right\}\)
\(\Rightarrow\)\(2n\in\left\{0;1;2;5\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b) \(3m-9⋮3m-1\)
\(\Rightarrow\left(3m-1\right)-8⋮3m-1\)
\(\Rightarrow8⋮3m-1\)(vì \(3m-1⋮3m-1\))
\(\Rightarrow3m-1\inƯ\left(8\right)\)
\(\Rightarrow3m-1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow3m\in\left\{2;3;5;9\right\}\)
\(\Rightarrow m\in\left\{1;3\right\}\)
Hok "tuốt" nha^^
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
n+6 chia hết cho 2n-1 => 2(n+6) chia hết cho 2n-1 => 2n+12 chia hết cho 2n-1, 2n-1 chia hết cho 2n-1
=> (2n+12) - (2n-1) chi hết cho 2n-1 => 2n + 12 - 2n + 1 chi hết cho 2n-1
=> 13 chia hết cho 2n-1 => 2n-1 thuộc Ư(13) = {1 ; 13} mà 2n-1 là số lẻ
=> 2n-1 = 1
2n = 1+1
2n = 2
n = 2 : 2
n = 1
Vậy n = 1