K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

\(\left(n.y\right)+1=n\)

\(1=n-n.y\)

\(1=n\left(1-y\right)\)

\(\Rightarrow n;1-y\inƯ\left(1\right)\)

\(Ư\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{\pm1\right\}\)

9 tháng 8 2017

số cặp x,y là : 

N :2 = ??

đ/s:.......

số cặp x,y,z là :

N* :3=?

9 tháng 8 2017

sai rồi

19 tháng 12 2023

ko biết

19 tháng 12 2023

=> (n - 4) ⋮ (n - 1)

Ta có: n - 4 = (n - 1) - 3

Vì (n - 1) ⋮ (n - 1) nên để (n - 1) - 3 ⋮ (n - 1) thì 3 ⋮ (n - 1)

=> n - 1 ϵ Ư(3) = {-3; -1; 1; 3}

TH1: n - 1 = -3 

=> n = -2 (Thỏa mãn)

TH2: n - 1 = -1

=> n = 0 (Thỏa mãn)

TH3: n - 1 = 1

=> n = 2 (Thỏa mãn)

TH4: n - 1 = 3

=> n = 4 (Thỏa mãn)

Vậy n ϵ {-2; 0; 2; 4}

20 tháng 10 2018

a) 

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)

8 tháng 7 2019

\(x^2+2x+4^n-2^{n+1}+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(4^n-2^n.2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(2^n-1\right)^2=0\Rightarrow\orbr{\begin{cases}x=-1\\n=0\end{cases}}\)

17 tháng 1 2023

Ta có :

 \(\left\{{}\begin{matrix}3n+4⋮2n+1\\2n+1⋮2n+1\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}2\left(3n+4\right)⋮2n+1\\3\left(2n+1\right)⋮2n+1\end{matrix}\right.\\ \rightarrow2\left(3n+4\right)-3\left(2n+1\right)⋮2n+1\\ \rightarrow5⋮2n+1\\ \rightarrow\left\{{}\begin{matrix}2n+1\inƯ\left(5\right)\\2n+1\in N\end{matrix}\right.\\ \rightarrow2n+1\in\left\{1;5\right\}\)

Vậy `n = 0` hoặc `n=2` 

=>6n+8 chia hết cho 2n+1

=>6n+3+5 chia hết cho 2n+1

mà n là số tự nhiên

nên \(2n+1\in\left\{1;5\right\}\)

=>\(n\in\left\{0;2\right\}\)