K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

1<m<3

\(x^2-\left(2m+3\right)x+m^2+3m+2=0.\)\(\left\{x^2-\left(2m+3\right)x+\frac{\left(2m+3\right)^2}{4}\right\}=\frac{\left(2m+3\right)^2+4m^2+12m+8}{4}\)\(\left(x-\frac{2m+3}{2}\right)^2=\frac{8m^2+24m+17}{4}\)\(\Leftrightarrow\hept{\begin{cases}2x-2m+3=\sqrt{8m^2+24m+17}\\2x-2m+3=-\sqrt{8m^2+24m+17}\end{cases}}\)để căn có nghĩa thì\(8m^2+24m+17=\left(m^2+3m+\frac{9}{4}\right)-\frac{1}{8}\ge0\)\(\left(m+\frac{3}{2}\right)^2\ge\frac{1}{8}\) " suy ra m.....vậy pt có 2 nghiệm phân...
Đọc tiếp

\(x^2-\left(2m+3\right)x+m^2+3m+2=0.\)

\(\left\{x^2-\left(2m+3\right)x+\frac{\left(2m+3\right)^2}{4}\right\}=\frac{\left(2m+3\right)^2+4m^2+12m+8}{4}\)

\(\left(x-\frac{2m+3}{2}\right)^2=\frac{8m^2+24m+17}{4}\)

\(\Leftrightarrow\hept{\begin{cases}2x-2m+3=\sqrt{8m^2+24m+17}\\2x-2m+3=-\sqrt{8m^2+24m+17}\end{cases}}\)

để căn có nghĩa thì

\(8m^2+24m+17=\left(m^2+3m+\frac{9}{4}\right)-\frac{1}{8}\ge0\)

\(\left(m+\frac{3}{2}\right)^2\ge\frac{1}{8}\) " suy ra m.....

vậy pt có 2 nghiệm phân biệt với m.....

\(\Leftrightarrow\hept{\begin{cases}x1=\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\\x2=-\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\end{cases}}\)

\(x1< -3\Leftrightarrow-3< \frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\)

\(\Leftrightarrow m>-3-\frac{1}{2}\sqrt{8m^2+24+17}+\frac{3}{2}\)

\(x1< x2\Leftrightarrow\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}< -\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\)

\(\Leftrightarrow0< -\sqrt{8m^2+24+17}\)

\(x2< 6\Leftrightarrow-\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}< 6\)

\(\Leftrightarrow m< 6+\frac{1}{2}\sqrt{8m^2+24+17}+\frac{3}{2}\)

dcpcm =))

 

 

2
5 tháng 9 2018

Câu này là toán lớp 1 ư ???????

6 tháng 9 2018

Toán lớp 1 là đây á

a, Đặt \(x^2=t\left(t\ge0\right)\)=> \(t^2-2mt+2m-1=0\)<=> \(\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)<=> \(\orbr{\begin{cases}t=1\\t=2m-1\end{cases}}\)Mà \(t\ge0\), phương trình có 4 nghiệm phân biệt => \(m\ge\frac{1}{2},m\ne1\)Phương trình có 4 nghiệm \(S=\left\{-1,-\sqrt{2m-1},1,\sqrt{2m-1}\right\}\)2 trường hợp TH1   \(-\sqrt{2m-1}< -1< 1< \sqrt{2m-1}\)(x1<x2<x3<x4)=> \(2\sqrt{2m-1}=3.2\)=> m=5(thỏa mãn ĐK)Hoặc \(-1< -\sqrt{2m-1}<...
Đọc tiếp

a, Đặt \(x^2=t\left(t\ge0\right)\)

=> \(t^2-2mt+2m-1=0\)

<=> \(\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)

<=> \(\orbr{\begin{cases}t=1\\t=2m-1\end{cases}}\)

Mà \(t\ge0\), phương trình có 4 nghiệm phân biệt => \(m\ge\frac{1}{2},m\ne1\)

Phương trình có 4 nghiệm \(S=\left\{-1,-\sqrt{2m-1},1,\sqrt{2m-1}\right\}\)

2 trường hợp

 TH1   \(-\sqrt{2m-1}< -1< 1< \sqrt{2m-1}\)(x1<x2<x3<x4)

=> \(2\sqrt{2m-1}=3.2\)=> m=5(thỏa mãn ĐK)

Hoặc \(-1< -\sqrt{2m-1}< \sqrt{2m-1}< 1\)

=> \(2=6\sqrt{2m-1}\)=> \(m=\frac{5}{9}\)(thỏa mãn ĐK)

Vậy \(m=\frac{5}{9},m=5\)

b, Đặt \(x^2=t\left(t\ge0\right)\)=> \(x_1^2=x_2^2,x_3^2=x_4^2\)

=> \(t^2-2\left(2m+1\right)t+4m^2=0\)

Phương trình có 2 nghiệm không âm 

\(\hept{\begin{cases}\Delta'\ge0\\2m+1>0\\4m^2\ge0\end{cases}}\)=> \(m\ge-\frac{1}{4}\)

Áp dụng hệ thức vi-et ta có 

\(\hept{\begin{cases}t_1+t_2=2\left(2m+1\right)\\t_1t_2=4m^2\end{cases}}\)

Theo đề bài ta có 

\(2\left(t_1^2+t_2^2\right)=17\)

=> \(2\left[4\left(2m+1\right)^2-8m^2\right]=17\)

=> \(16m^2+32m-9=0\)

=> \(\orbr{\begin{cases}m=\frac{1}{4}\\m=-\frac{9}{4}\end{cases}}\)

Kết hợp với ĐK

=> \(m=\frac{1}{4}\)

Vậy m=1/4

 

0
5 tháng 3 2018

mình viết lộn thay m^3+3m^2 nha

NV
29 tháng 4 2020

\(\frac{2m-1}{m-1}< 0\Rightarrow\frac{1}{2}< m< 1\)

Khi đó: \(\left(m+1\right)x-2x< -2m+2\)

\(\Leftrightarrow\left(m-1\right)x< -2\left(m-1\right)\)

Do \(\frac{1}{2}< m< 1\Rightarrow m-1< 0\)

\(\Rightarrow x>\frac{-2\left(m-1\right)}{m-1}=-2\)

Vậy tập nghiệm của BPT là \(x>-2\)