cho \(\hept{\begin{cases}x^2+xy+y^2=3\\y^2+yz+z^2=16\end{cases}}\)cmr \(xy+yz+zx\le8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Bn Nguyễn Quyết Thắng trả lời luôn đi, nếu ko trả lời đc thì ko đc bình luận linh tinh nhé !
- Hok tốt !
^_^
\(\hept{\begin{cases}xy=x+y+1\\yz=y+z+5\\xz=z+x+2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=2\left(1\right)\\\left(y-1\right)\left(z-1\right)=6\left(2\right)\\\left(x-1\right)\left(z-1\right)=3\left(3\right)\end{cases}}\)
Nhân (1) , (2) , (3) theo vế được : \(\left[\left(x-1\right)\left(y-1\right)\left(z-1\right)\right]^2=36\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(y-1\right)\left(z-1\right)=6\\\left(x-1\right)\left(y-1\right)\left(z-1\right)=-6\end{cases}}\)
- Nếu (x-1)(y-1)(z-1) = 6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)
- Nếu (x-1)(y-1)(z-1) = -6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=0\\y=-1\\z=-2\end{cases}}\)
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)
=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)
+ \(x+y+z=2\)
Thay vào Pt (1)
=> \(xy+z\left(2-z\right)=1\)
=> \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)
=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)
Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)
+ \(x+y+z=-2\)
=> \(xy+z\left(-2-z\right)=1\)
=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)
=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)
=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)
TT => \(x,y,z\ge-\frac{4}{3}\)
Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)
https://goo.gl/BjYiDy