K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

các đường thẳng qua F song song với BN và qua B song song với CP cắt nhau tại D 
a) CM : Tứ giác BDCP là hình bình hành 
b) CM : Tứ giác PNCD là hình thang 
c) CM : AM // ND và AM = ND

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

10 tháng 12 2021

a: Xét tứ giác AEBM có 

D là trung điểm của AB

D là trung điểm của EM

Do đó: AEBM là hình bình hành

a: Xét tứ giác AMBE có 

D là trung điểm của AB

D là trung điểm của ME

Do đó: AMBE là hình bình hành

mà MA=MB

nên AMBE là hình thoi

18 tháng 12 2023

a: Xét tứ giác ABMD có

O là trung điểm chung của AM và BD

=>ABMD là hình bình hành

b: ta có:ABMD là hình bình hành

=>AD//MB và AD=MB

Ta có: AD//MB

M\(\in\)BC

Do đó: AD//CM

Ta có: AD=MB

MC=MB

Do đó: AD=MC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(MA=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMCD có

AD//CM

AD=CM

Do đó:AMCD là hình bình hành

Hình bình hành AMCD có MA=MC

nên AMCD là hình thoi

c: Ta có: AMCD là hình thoi

=>AC vuông góc với DM tại trung điểm của mỗi đường

=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM

Xét ΔABC có

N,K lần lượt là trung điểm của AB,AC

=>NK là đường trung bình của ΔABC

=>NK//BC 

=>NK//MH

Xét ΔABC có

M,N lần lượt là trung điểm của BC,BA

=>MN là đường trung bình của ΔABC

=>MN//AC và \(MN=\dfrac{AC}{2}\)

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(HK=\dfrac{AC}{2}\)

=>MN=HK

Xét tứ giác MHNK có MH//NK và MN=HK

nên MHNK là hình thang cân

d: 

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(KA=KH=KC=\dfrac{AC}{2}\)

Ta có: ΔHAB vuông tại H

mà HN là đường trung tuyến

nên \(HN=AN=NB=\dfrac{AB}{2}\)

Xét ΔKAN và ΔKHN có

KA=KH

AN=HN

KN chung

Do đó: ΔKAN=ΔKHN

=>\(\widehat{KAN}=\widehat{KHN}=90^0\)

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCKlà hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành