Tìm cặp số (x,y) thỏa mãn: y (x-1)=x\(^2\)+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x;y\ne0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(y^2+\dfrac{1}{y^2}-2\right)=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(\pm1;\pm1\right)\)
tại sao lại lấy \(x^2+\dfrac{1}{x^2}-2\)\(+y^2+\dfrac{1}{x^2}-2\) ạ?
Câu trả lời hay nhất: trừu tượng. nếu không nguyên
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định
đặt x+y=a=> y=a-x
thay vào pt điều kiện
2(x^2+1)+x^2=2(a-x)(x+1)
3x^2+2 =2ax+2a-2x^2-2x
5x^2+2x-2ax+2-2a=0
5x^2+2(1-a)x+2(1-a)=0
(1-a)^2-10(1-a)>=0
(1-a)(1-a-10)>=0
(a-1)(a+9)>=0
a<=-9
hoặc
a>=1
(x+y)<-9 hoặc (x+y)>=1
Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?
Ta có:
\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(3-y^2-2y=4-\left(y^2+2y+1\right)=4-\left(y+1\right)^2\le4\)
\(\Rightarrow\left|x+3\right|+\left|x-1\right|\ge3-y^2-2y\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+3\right)\left(1-x\right)\ge0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le1\\y=-2\end{matrix}\right.\)
Các cặp số nguyên thỏa mãn là:
\(\left(x;y\right)=\left(-3;-2\right);\left(-2;-2\right);\left(-1;-2\right);\left(0;-2\right);\left(1;-2\right)\)