K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

27 tháng 8 2020

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

30 tháng 9 2020

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

2 tháng 10 2020

cảm ơn bạn nhìuuu 💞

10 tháng 6 2017

a) \(-2x^2+2x+1>0\)

   \(-\left(2x^2-2x-1\right)>0\)

nhân 2 vế với (-1)=> đổi dấu sao sánh

\(\Leftrightarrow2x^2-2x-1< 0\)

\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)

ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)

=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)

b) \(9x^2-6x+2>0\)

<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)

<=>\(\left(3x-1\right)^2+1>0\)(1)

vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1)  luôn đúng     ( bạn lí giải tương tự như trên nha)

c)\(-4x^2-4x-2< 0\)

\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)

nhân 2 vế với (-1)=> đổi dấu so sánh 

\(4x^2+4x+2>0\)

\(\Leftrightarrow\left(2x+1\right)^2+1>0\)

lí giải tương tự như trên

=> đpcm

10 tháng 6 2017

Câu a sai đề rồi cậu ơi

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

16 tháng 6 2018

a) Đặt  \(A=4x-x^2-5\)

\(-A=x^2-4x+5\)

\(-A=\left(x^2-4x+4\right)+1\)

\(-A=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge1\)

\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)

b) Đặt  \(B=x^2-2x+5\)

\(B=\left(x^2-2x+1\right)+4\)

\(B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\left(đpcm\right)\)

16 tháng 6 2018

a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)

b) x-2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0  với mọi x (đpcm)

6 tháng 10 2018

x^2 + 2x + 2 = x^2 + 2.x.1 + 1^2 +1 = (x + 1)^2 + 1 > 0

-x^2 + 4x - 4 = -(x^2 - 2.x.2 + 2^2) = -(x - 2)^2 <= 0

6 tháng 10 2018

a) ta co ; x^2+ 2x+ 2= (x2+2x+1)+1=(x+1)2+1>0

vi (x+1)2>hoặc=0;1>0suy ra x^2+ 2x+ 2>0

b)ta co  -x2+4x-4=-(x2-4x+4)=-(x-2)2<0