rut gọn
1.3.5...49
26.27.28...50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5A=5+5^2+5^3+.....+5^{51}\)
\(5A-A=\left(5+5^2+5^3+....+5^{51}\right)-\left(1+5+5^2+.....+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
=15√20 -3√45+2√5
=15\(\sqrt{4x5}\)-3\(\sqrt{9x5}\)+2√5
=30√5 -9√5+2√5
=23√5
\(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\) =\(\left(150\sqrt{2}-45\sqrt{2}+10\sqrt{2}\right):\sqrt{10}\)
=\(115\sqrt{2}:\sqrt{10}\)
chắc vậy
Rut gon:
\(B=\frac{\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}}{\sqrt{50}+\sqrt{250}}\)
Mẫu số bằng \(\sqrt{50}+\sqrt{250}=5\sqrt{2}+5\sqrt{10}=5\sqrt{2}\left(1+\sqrt{5}\right).\)
Kí hiệu tử số là \(A\) thì ta có
\(A^2=\left(\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}\right)^2\)
\(=8+\sqrt{40+8\sqrt{5}}+2\sqrt{8+\sqrt{40+8\sqrt{5}}}\cdot\sqrt{8-\sqrt{40+8\sqrt{5}}}+8-\sqrt{40+8\sqrt{5}}\)
\(=16+2\sqrt{\left(8+\sqrt{40+8\sqrt{5}}\right)\left(8-\sqrt{40+8\sqrt{5}}\right)}\)
\(=16+2\sqrt{8^2-\left(40+8\sqrt{5}\right)}=16+2\sqrt{24-8\sqrt{5}}\)
\(=16+2\sqrt{4-2\cdot2\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2}=16+2\sqrt{\left(2-2\sqrt{5}\right)^2}\)
\(=16+2\left|2-2\sqrt{5}\right|=16-4+4\sqrt{5}=12+4\sqrt{5}=4\left(3+\sqrt{5}\right).\)
Vậy \(A=4\left(3+\sqrt{5}\right)=2\left(6+2\sqrt{5}\right)=2\left(\sqrt{5}+1\right)^2.\)
Thành thử \(B=\frac{2\left(\sqrt{5}+1\right)^2}{5\sqrt{2}\left(1+\sqrt{5}\right)}=\frac{\sqrt{2}\left(\sqrt{5}+1\right)}{5}=\frac{\sqrt{10}+\sqrt{2}}{5}.\)
\(\frac{2^{50}.3^{14}.7^{28}}{3^{13}.2^{51}.7^{28}}=\frac{2^{50}.3^{14}.7^{28}}{2^{51}.3^{13}.7^{28}}=\frac{1.3.1}{2.1.1}=\frac{3}{2}\)
chắc zậy
duyệt đi
\(\frac{2^{50}.3^{14}.7^{28}}{3^{13}.2^{51}.7^{28}}=\frac{3}{2}\)
1/50331648
1/33554432