K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Ta có : n+3=(n+1)+2

Vì (n+1) chia hết cho (n+1) Nên (n+3) chia hết cho (n+1) thì 2 chia hết cho (n+1)

=>n+1 thuộc Ư(2)={1;2}

n+1        1         2

n            0         1

Vậy n thuộc {0;1} thì n+3 chia hết cho n+1

28 tháng 12 2022

ta có n+1⋮n+1

mà n+3⋮n+1

\Rightarrow n+3-\left(n+1\right)⋮n+1

\Rightarrow n+3-n-2  ⋮n+1

\Rightarrow  2  ⋮n+1

\Rightarrow n+1\in\text{Ư}_{\left(2\right)}=\text{ }\left\{1;2\right\}

nếu n+1=1\Rightarrow n=0 ( thỏa mãn )

nếu n+1=2\Rightarrow n+1 ( thỏa mãn )

vậy n\in\text{ }\left\{0;1\right\}

b)Ta có:

4n+ 3⋮⋮ 2n+ 1.

Ta có: 2n+ 1⋮⋮ 2n+ 1.

=> 2( 2n+ 1)⋮⋮ 2n+ 1.

=> 4n+ 2⋮⋮ 2n+ 1.

Mà 4n+ 3⋮⋮ 2n+ 1.

=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.

=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.

=> 1⋮⋮ 2n+ 1.

=> n= 1.

Vậy n= 1.

 Tick cho mình nha!

28 tháng 12 2022

Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
                      n-1=5=>n=6
Vậy n={2;6}

22 tháng 11 2019

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3

+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3

=> tích chia hết cho 3 với mọi n

23 tháng 7 2017

Ta có : n2 + 3 chia hết cho n - 1

=> n2 - 1 + 4 chia hết cho n - 1

=> (n - 1)(n + 1) + 4 chia hết cho n - 1

=>  4 chia hết cho n - 1

=> n - 1 thuộc Ư(4) = {1;2;4}

=> n thuộc {2;3;5}

Ta có : n2 + 3 chia hết cho n - 1

\(\Rightarrow\)n2 - 1 + 4 chia hết cho n- 1

\(\Rightarrow\)( n - 1 ) ( n + 1 ) + 4 chia hết cho n - 1

\(\Rightarrow\)4 chia hết cho n - 1

\(\Rightarrow\)n - 1 thuộc Ư (4) = { 1 , 2 , 4 ).

\(\Rightarrow\)n thuộc { 2 , 3 , 5 }

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

17 tháng 10 2016

n^2+n+1= nx(n+1)+1 vì số chia hết cho 5 thì phải có tận cùng là 0 hoạc 5 nên nx(n+1)+1 không chia hết cho5

6 tháng 9 2023

 Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\)

 Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Ta có đpcm.

6 tháng 9 2023

mk ko có hỉu