Chứng minh n+3 chia hết cho n+1.Giup mình với mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
mà
nếu ( thỏa mãn )
nếu ( thỏa mãn )
vậy
b)Ta có:
4n+ 3⋮⋮ 2n+ 1.
Ta có: 2n+ 1⋮⋮ 2n+ 1.
=> 2( 2n+ 1)⋮⋮ 2n+ 1.
=> 4n+ 2⋮⋮ 2n+ 1.
Mà 4n+ 3⋮⋮ 2n+ 1.
=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.
=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.
=> 1⋮⋮ 2n+ 1.
=> n= 1.
Vậy n= 1.
Tick cho mình nha!
Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
n-1=5=>n=6
Vậy n={2;6}
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
Ta có : n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {1;2;4}
=> n thuộc {2;3;5}
Ta có : n2 + 3 chia hết cho n - 1
\(\Rightarrow\)n2 - 1 + 4 chia hết cho n- 1
\(\Rightarrow\)( n - 1 ) ( n + 1 ) + 4 chia hết cho n - 1
\(\Rightarrow\)4 chia hết cho n - 1
\(\Rightarrow\)n - 1 thuộc Ư (4) = { 1 , 2 , 4 ).
\(\Rightarrow\)n thuộc { 2 , 3 , 5 }
......................?
mik ko biết
mong bn thông cảm
nha ................
n^2+n+1= nx(n+1)+1 vì số chia hết cho 5 thì phải có tận cùng là 0 hoạc 5 nên nx(n+1)+1 không chia hết cho5
Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\).
Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Ta có đpcm.
Ta có : n+3=(n+1)+2
Vì (n+1) chia hết cho (n+1) Nên (n+3) chia hết cho (n+1) thì 2 chia hết cho (n+1)
=>n+1 thuộc Ư(2)={1;2}
n+1 1 2
n 0 1
Vậy n thuộc {0;1} thì n+3 chia hết cho n+1