Tìm x,y \(\in\)N* biết:
\(\overline{xy}\)= x3 + y2
Nhanh, đúng, đủ => tick (giải trong ngày)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có (x-2)^2 >=0 nên để (x-2)^2.(x+1).(x-4) < 0 thì (x+1).(x-4) < 0 (1)
Mà ta thấy x+1 > x-4 (1)=> x+1 > 0 và x-4 < 0
<=> x>-1 và x <4 <=> -1 < x <4
\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)
Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)
Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)
Vậy số cần tìm là 19
a) Ta có: |4x - 1| - x = 15
- Nếu \(4x-1\ge0\) \(\Rightarrow x\ge\frac{1}{4}\)
=> 4x - 1 - x = 15
=> 3x = 15 + 1
=> 3x = 16
=> x = \(\frac{16}{3}\) (thỏa mãn điều kiện)
- Nếu \(4x-1< 0\Rightarrow x< \frac{1}{4}\)
=> 1 - 4x - x = 15
=> -5x = 14
=> x = \(\frac{-14}{5}\) (thỏa mãn điều kiện)
Vậy x = \(\frac{16}{3}\) hoặc x = \(\frac{-14}{5}\)
Câu b hình như là đề sai rùi bạn ơi.
c) Ta có: 2x = 3y
\(\Rightarrow\) \(\frac{x}{3}=\frac{y}{2}\) \(\Rightarrow\) \(\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z
\(\Rightarrow\) \(\frac{y}{7}=\frac{z}{5}\) \(\Rightarrow\) \(\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) suy ra:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\) \(\frac{x}{21}=2\) \(\Rightarrow\) \(x=21.2=42\)
\(\Rightarrow\) \(\frac{y}{14}=2\) \(\Rightarrow\) \(y=14.2=28\)
\(\Rightarrow\)\(\frac{z}{10}=2\) \(\Rightarrow\) \(z=10.2=20\)
Vậy x = 42; y = 28; z = 20
\(A=x^3+x^2y-2x^2-xy-y^2+3y+x+2019\)
\(=x^3+x^2\left(2-x\right)-2x^2-y\left(x+y\right)+3y+x+2019\)
\(=x^3+2x^2-x^3-2x^2-2y+3y+x+2019\)
\(=x+y+2019=2021\)