K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

SAI ĐỀ TRÊN TIA MA LẤY D SAO CHO MA = MD

20 tháng 12 2017

lê tự minh quang , trên tia AM lấy D sao cho AM=MD cũng được nhé ! Không tin thì thử vẽ hình xem !

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = ME (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB = CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{BHA}=\widehat{BHD}=90^0\) 

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`=> AB = BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD = CE`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`HA = HD (g``t)`

\(\widehat{AHM}=\widehat{DHM}=90^0\)  

`HM` chung

`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`

`=> AM = DM (2` cạnh tương ứng `)`

Xét Tam giác `AMD` có: `AM = DM`

`->` Tam giác `AMD` là tam giác cân.

 

loading...

Mình bổ sung thêm hình ạ ._. nãy k sửa kịp á.

30 tháng 12 2017

Bạn tự vẽ hình nhé.

a) Xét tam giác AMB và tam giác DMC có: MB = MC (gt)   ;   góc AMB = góc DMC (2 góc đối đỉnh)    ; AM = MD (gt)

=> tam giác AMB = tam giác DMC (c.g.c)        (đpcm)

b) Vì AH vuông góc BC tại H (gt) (*) nên góc AHM = góc EHM = 90o (định nghĩa).

Xét tam giác HMA và tam giác HME có: chung HM     ;      góc AHM = góc EHM (cmt)       ;      HA = HE (gt)

=>  tam giác HMA = tam giác HME (c.g.c)      (1)

=> MA = ME (2 cạnh tương ứng) mà MA = MD (gt) nên ME = MD.

c) Vì ME = MD nên tam giác MDE cân tại M. => góc MED = góc MDE (t/c)       (2)

Từ (1) => góc MAH = góc MEH (3)

Từ (2) và (3) => góc DEA = góc DAE + góc ADE => góc DEA = 90

=> DE vuông góc AH.  (**)

Từ (*) và (**) => DE // BC

                                                                     

9 tháng 3 2022

a) Xét tam giác AMB và tam giác DMC:

AM = DM (gt).

BM = CM (M là trung điểm của cạnh BC).

\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Xét tam giác ABD và tam giác DCA:

AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)

AD chung.

\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)

\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)

Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)

Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)

\(\Rightarrow AB+AC>2AM.\)

a: Xét ΔAMB và ΔEMC co

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔAMD có

MH vừa là đường cao, vừa là trung tuyến

nên ΔAMD cân tại M

30 tháng 12 2021

a/  Xét △ABM và △DMC có:

AM=MD(gt)

MB=MC(gt)

^AMB=^CMD(đối đỉnh)

⇒ΔAMB=ΔDMC(cmt)(đpcm).

b/ Ta có: ΔAMB=ΔDMC(cmt)

⇒^MAB=^MDC⇒^MAB=^MDC[ hai góc ở vị trí so le trong]

Vậy: AB // CD (đpcm).

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ta có; ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

c: Xét ΔNAB và ΔNCE có

NA=NC

\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)

NB=NE

Do đó: ΔNAB=ΔNCE

=>AB=CE 

Ta có: ΔNAB=ΔNCE

=>\(\widehat{NAB}=\widehat{NCE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

Ta có: AB//CE

AB//CD

CE,CD có điểm chung là C

Do đó: E,C,D thẳng hàng

Ta có: EC=AB

CD=AB

Do đó: EC=CD
mà E,C,D thẳng hàng

nên C là trung điểm của ED

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui